A318440 a(n) = A046645(n) - A007814(n); the 2-adic valuation of A299150.
0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 4, 2, 1, 2, 1, 3, 2, 1, 2, 4, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 1, 4, 3, 3, 2, 2, 1, 4, 2, 2, 2, 1, 1, 3, 1, 1, 4, 4, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 4, 2, 2, 2, 1, 4, 7, 1, 1, 3, 2, 1, 2, 2, 1, 4, 2, 2, 2, 1, 2, 4, 1, 3, 4, 4, 1, 2, 1, 2, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[p_, e_] := (1 + Mod[p, 2])*e - DigitCount[e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
-
PARI
A007814(n) = valuation(n,2); A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; A046645(n) = vecsum(apply(e -> A005187(e),factor(n)[,2])); A318440(n) = A046645(n) - A007814(n);
Formula
Additive with a(p^e) = (1 + (p mod 2))*e - A000120(e). - Amiram Eldar, Apr 28 2023
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -1 + Sum_{p prime} f(1/p) = 0.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 30 2023
Comments