cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A318663 The 2-adic valuation of A318662.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 4, 1, 1, 2, 3, 3, 2, 1, 1, 4, 2, 2, 2, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 2, 2, 1, 4, 1, 1, 4, 1, 2, 2, 1, 2, 7, 1, 1, 2, 2, 1, 2, 2, 1, 4, 2, 1, 2, 1, 2, 2, 1, 3, 4, 3, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Use the program given in A318662.

Formula

a(n) = A007814(A318662(n)).

A055653 Sum of phi(d) [A000010] over all unitary divisors d of n (that is, gcd(d,n/d) = 1).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 9, 17, 14, 19, 15, 21, 22, 23, 15, 21, 26, 19, 21, 29, 30, 31, 17, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 27, 43, 42, 51, 39, 53, 38, 55, 35, 57, 58, 59, 45, 61, 62, 49, 33, 65, 66, 67, 51, 69, 70, 71, 35, 73
Offset: 1

Views

Author

Labos Elemer, Jun 07 2000

Keywords

Comments

Phi-summation over d-s if runs over all divisors is n, so these values do not exceed n. Compare also other "Phi-summations" like A053570, A053571, or distinct primes dividing n, etc.
a(n) is also the number of solutions of x^(k+1)=x mod n for some k>=1. - Steven Finch, Apr 11 2006
An integer a is called regular (mod n) if there is an integer x such that a^2 x == a (mod n). Then a(n) is also the number of regular integers a (mod n) such that 1 <= a <= n. - Laszlo Toth, Sep 04 2008
Equals row sums of triangle A157361 and inverse Mobius transform of A114810. - Gary W. Adamson, Feb 28 2009
a(m) = m iff m is squarefree, a(A005117(n)) = A005117(n). - Reinhard Zumkeller, Mar 11 2012
Apostol & Tóth call this ϱ(n), i.e., varrho(n). - Charles R Greathouse IV, Apr 23 2013

Examples

			n=1260 has 36 divisors of which 16 are unitary ones: {1,4,5,7,9,20,28,35,36,45,63,140,180,252,315,1260}.
EulerPhi values of these divisors are: {1,2,4,6,6,8,12,24,12,24,36,48,48,72,144,288}.
The sum is 735, thus a(1260)=735.
Or, 1260=2^2*3^2*5*7, thus a(1260) = (1 + 2^2 - 2)*(1 + 3^2 - 3)*(1 + 5 - 5^0)*(1 + 7 - 7^0) = 735.
		

References

  • J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica (Lisboa), 33 (1972), no. 125-128, 1-5. [From Laszlo Toth, Sep 04 2008]
  • J. Morgado, A property of the Euler phi-function concerning the integers which are regular modulo n, Portugal. Math., 33 (1974), 185-191.

Crossrefs

Programs

  • Haskell
    a055653 = sum . map a000010 . a077610_row
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    A055653 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]-ifactors(n)[ 2 ][ i ] [ 1 ]^(ifactors(n)[ 2 ] [ i ] [ 2 ]-1)): od: RETURN(ans) end:
  • Mathematica
    a[n_] := Total[EulerPhi[Select[Divisors[n], GCD[#, n/#] == 1 &]]]; Array[a, 73] (* Jean-François Alcover, May 03 2011 *)
    f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ Charles R Greathouse IV, Feb 19 2013, corrected by Antti Karttunen, Sep 03 2018
    
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^f[i,2]-f[i,1]^(f[i,2]-1)+1) \\ Charles R Greathouse IV, Feb 19 2013

Formula

If n = product p_i^e_i, a(n) = product (1+p_i^e_i-p_i^(e_i-1)). - Vladeta Jovovic, Apr 19 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*product_{primes p} (1+p^(-2s)-p^(1-2s)-p^(-s)). - R. J. Mathar, Oct 24 2011
Dirichlet convolution square of A318661(n)/A318662(n). - Antti Karttunen, Sep 03 2018
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.535896... - Vaclav Kotesovec, Dec 17 2019

A318314 Denominators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 2, 2, 1, 8, 1, 2, 1, 128, 1, 4, 1, 8, 1, 2, 1, 16, 2, 2, 2, 8, 1, 2, 1, 256, 1, 2, 1, 16, 1, 2, 1, 16, 1, 2, 1, 8, 2, 2, 1, 128, 2, 4, 1, 8, 1, 4, 1, 16, 1, 2, 1, 8, 1, 2, 2, 1024, 1, 2, 1, 8, 1, 2, 1, 32, 1, 2, 2, 8, 1, 2, 1, 128, 8, 2, 1, 8, 1, 2, 1, 16, 1, 4, 1, 8, 1, 2, 1, 256, 1, 4, 2, 16, 1, 2, 1, 16, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".
Note that A318314 differs from A318454 at exactly those n where A001227 differs from A068068, the numbers in A038838. - Antti Karttunen, Sep 07 2018

Crossrefs

Programs

  • Mathematica
    a35[n_] := (1 - (-1)^n)/2;
    a120[n_] := DigitCount[n, 2, 1];
    a[n_] := Product[{p, e} = pe; 2^(((2 - a35[p])*e) - a120[e]), {pe, FactorInteger[n]}];
    a /@ Range[100] (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    up_to = 16384;
    A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318313_15 = DirSqrt(vector(up_to, n, A068068(n)));
    A318313(n) = numerator(v318313_15[n]);
    A318314(n) = denominator(v318313_15[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318315(n).
From Antti Karttunen, Sep 03-07 2018: (Start, conjectured formulas)
a(n) = A006519(n) * A317934(n), thus multiplicative with a(2^e) = 2^A005187(e), a(p^e) = 2^A011371(e) for odd primes p.
Equally, multiplicative with a(p^e) = 2^(((2-A000035(p))*e)-A000120(e)) for all primes p.
(End)

A318661 Numerators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 3, 19, 5, 11, 3, 13, 7, 15, 5, 17, 19, 19, 5, 21, 11, 23, 9, 59, 13, 95, 7, 29, 15, 31, 9, 33, 17, 35, 19, 37, 19, 39, 15, 41, 21, 43, 11, 95, 23, 47, 15, 123, 59, 51, 13, 53, 95, 55, 21, 57, 29, 59, 15, 61, 31, 133, 67, 65, 33, 67, 17, 69, 35, 71, 57, 73, 37, 177, 19, 77, 39, 79, 25, 2019, 41, 83, 21, 85, 43, 87, 33, 89
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Crossrefs

Cf. A055653, A318662 (denominators).

Programs

  • PARI
    up_to = 1+(2^16);
    A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA055653(n)));
    A318661(n) = numerator(v318661_62[n]);
    A318662(n) = denominator(v318661_62[n]);
    A318663(n) = valuation(A318662(n),2);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + X^2 - p*X^2 - X)/((1-X)*(1-p*X)))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 10 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{primes p} (1 + 1/p^(2*s) - 1/p^(2*s-1) - 1/p^s).
Sum_{k=1..n} A318661(k) / A318662(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - ((gamma - 1)/2 + f'[2]/(2*f(2)) + 3*zeta'(2)/Pi^2) / (2*log(n))), where
f(2) = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...
f'(2)/f(2) = Sum_{primes p} (p^2 + 2*p - 2) * log(p) / (p^4 - p^2 - p + 1) = 0.8249574883141571786856463180997569604486048593127391054584235479395133668...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-4 of 4 results.