cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A318315 The 2-adic valuation of A318314.

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 4, 1, 1, 0, 3, 0, 1, 0, 7, 0, 2, 0, 3, 0, 1, 0, 4, 1, 1, 1, 3, 0, 1, 0, 8, 0, 1, 0, 4, 0, 1, 0, 4, 0, 1, 0, 3, 1, 1, 0, 7, 1, 2, 0, 3, 0, 2, 0, 4, 0, 1, 0, 3, 0, 1, 1, 10, 0, 1, 0, 3, 0, 1, 0, 5, 0, 1, 1, 3, 0, 1, 0, 7, 3, 1, 0, 3, 0, 1, 0, 4, 0, 2, 0, 3, 0, 1, 0, 8, 0, 2, 1, 4, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A007814(A318314(n)).

A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
a(n) = A046644(n)/A006519(n). - Andrew Howroyd and Antti Karttunen, Aug 30 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A318662 Denominators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 8, 2, 2, 2, 2, 2, 4, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 16, 2, 2, 4, 2, 2, 4, 2, 4, 8, 2, 2, 4, 4, 2, 4, 2, 2, 16, 2, 2, 4, 8, 8, 4, 2, 2, 16, 4, 4, 4, 2, 2, 4, 2, 2, 16, 8, 4, 4, 2, 2, 4, 4, 2, 16, 2, 2, 16, 2, 4, 4, 2, 4, 128, 2, 2, 4, 4, 2, 4, 4, 2, 16, 4, 2, 4, 2, 4, 4, 2, 8, 16, 8, 2, 4, 2, 4, 8
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A055653, A318661 (numerators), A318663.

Programs

  • PARI
    up_to = 1+(2^16);
    A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA055653(n)));
    A318661(n) = numerator(v318661_62[n]);
    A318662(n) = denominator(v318661_62[n]);
    A318663(n) = valuation(A318662(n),2);
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, ((1 + X^2 - p*X^2 - X)/((1-X)*(1-p*X)))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 10 2025

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d 1.

A318313 Numerators of the sequence whose Dirichlet convolution with itself yields A068068, number of odd unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 231, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 3, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Cf. A068068, A318314 (denominators).
Differs from A318453 for the first time at n=81, where a(81) = 3, while A318453(81) = 1.

Programs

  • PARI
    up_to = 16384;
    A068068(n) = (2^omega(n>>valuation(n, 2))); \\ From A068068
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318313_15 = DirSqrt(vector(up_to, n, A068068(n)));
    A318313(n) = numerator(v318313_15[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A068068(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318313(k) / A318314(k) ~ 2*n/Pi. - Vaclav Kotesovec, May 10 2025

A318497 Numerators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

No zeros among the first 2^20 terms. This is most probably multiplicative, like A318498.

Crossrefs

Cf. A061389, A318314 (denominators).

Programs

  • PARI
    up_to = 65537;
    A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
    A318497(n) = numerator(v318497_98[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d 1.
Showing 1-5 of 5 results.