A280184 Number of cyclic subgroups of the group C_n x C_n x C_n x C_n, where C_n is the cyclic group of order n.
1, 16, 41, 136, 157, 656, 401, 1096, 1121, 2512, 1465, 5576, 2381, 6416, 6437, 8776, 5221, 17936, 7241, 21352, 16441, 23440, 12721, 44936, 19657, 38096, 30281, 54536, 25261, 102992, 30785, 70216, 60065, 83536, 62957, 152456, 52061, 115856, 97621, 172072, 70645, 263056, 81401, 199240, 175997, 203536, 106081, 359816, 137601, 314512
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino, 69 (2011), 97-110.
- László Tóth, On the number of cyclic subgroups of a finite abelian group, arXiv: 1203.6201 [math.GR], 2012.
Programs
-
Maple
with(numtheory): # define Jordan totient function J(r,n) J(r,n) := add(d^r*mobius(n/d), d in divisors(n)): seq(add(J(4,d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
-
Mathematica
a[n_] := With[{dd = Divisors[n]}, Sum[Times @@ EulerPhi @ {x, y, z, t} / EulerPhi[LCM[x, y, z, t]], {x, dd}, {y, dd}, {z, dd}, {t, dd}]]; Array[a, 50] (* Jean-François Alcover, Sep 28 2018 *) f[p_, e_] := 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
-
PARI
a(n) = sumdiv(n, x, sumdiv(n, y, sumdiv(n, z, sumdiv(n, t, eulerphi(x)*eulerphi(y)*eulerphi(z)*eulerphi(t)/eulerphi(lcm([x, y, z, t])))))); \\ Michel Marcus, Feb 26 2018
-
PARI
a160891(n) = sumdiv(n, d, moebius(n/d)*d^4)/eulerphi(n); a(n) = sumdiv(n, d, a160891(d)); \\ Seiichi Manyama, May 12 2021
Formula
a(n) = Sum_{a|n, b|n, c|n, d|n} phi(a)*phi(b)*phi(c)*phi(d)/phi(lcm(a, b, c, d)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.5010902655... . (End)
a(n) = Sum_{d divides n} J_4(d)/phi(d) = Sum_{1 <= i, j, k, l <= n} 1/phi(n/gcd(i,j,k,l,n)), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 23 2024
Comments