cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A280184 Number of cyclic subgroups of the group C_n x C_n x C_n x C_n, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 16, 41, 136, 157, 656, 401, 1096, 1121, 2512, 1465, 5576, 2381, 6416, 6437, 8776, 5221, 17936, 7241, 21352, 16441, 23440, 12721, 44936, 19657, 38096, 30281, 54536, 25261, 102992, 30785, 70216, 60065, 83536, 62957, 152456, 52061, 115856, 97621, 172072, 70645, 263056, 81401, 199240, 175997, 203536, 106081, 359816, 137601, 314512
Offset: 1

Views

Author

Laszlo Toth, Dec 28 2016

Keywords

Comments

Inverse Moebius transform of A160891. - Seiichi Manyama, May 12 2021

Crossrefs

Programs

  • Maple
    with(numtheory):
    # define Jordan totient function J(r,n)
    J(r,n) := add(d^r*mobius(n/d), d in divisors(n)):
    seq(add(J(4,d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
  • Mathematica
    a[n_] := With[{dd = Divisors[n]}, Sum[Times @@ EulerPhi @ {x, y, z, t} / EulerPhi[LCM[x, y, z, t]], {x, dd}, {y, dd}, {z, dd}, {t, dd}]];
    Array[a, 50] (* Jean-François Alcover, Sep 28 2018 *)
    f[p_, e_] := 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, x, sumdiv(n, y, sumdiv(n, z, sumdiv(n, t, eulerphi(x)*eulerphi(y)*eulerphi(z)*eulerphi(t)/eulerphi(lcm([x, y, z, t])))))); \\ Michel Marcus, Feb 26 2018
    
  • PARI
    a160891(n) = sumdiv(n, d, moebius(n/d)*d^4)/eulerphi(n);
    a(n) = sumdiv(n, d, a160891(d)); \\ Seiichi Manyama, May 12 2021

Formula

a(n) = Sum_{a|n, b|n, c|n, d|n} phi(a)*phi(b)*phi(c)*phi(d)/phi(lcm(a, b, c, d)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.5010902655... . (End)
a(n) = Sum_{d divides n} J_4(d)/phi(d) = Sum_{1 <= i, j, k, l <= n} 1/phi(n/gcd(i,j,k,l,n)), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 23 2024
Showing 1-1 of 1 results.