cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060648 Number of cyclic subgroups of the group C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 4, 5, 10, 7, 20, 9, 22, 17, 28, 13, 50, 15, 36, 35, 46, 19, 68, 21, 70, 45, 52, 25, 110, 37, 60, 53, 90, 31, 140, 33, 94, 65, 76, 63, 170, 39, 84, 75, 154, 43, 180, 45, 130, 119, 100, 49, 230, 65, 148, 95, 150, 55, 212, 91, 198, 105, 124, 61, 350, 63, 132, 153, 190
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001

Keywords

Comments

The group U(n) of units modulo n acts on the direct product (Z_n)^k by multiplication. The number g(n,k) of orbits of U(n) acting on Z/(n)^k is g(n,k) = (1/phi(n))*Sum(gcd(n,a-1)^k) where the sum is over a in U(n) and phi(n) is the Euler totient function. A060648 gives g(n,2). - W. Edwin Clark, Jul 20 2001
a(n) is also the number of orbits of length n for the map TxT (Cartesion product) where T is a map with one orbit of each length. - Thomas Ward, Apr 08 2009

Examples

			The cycle index of C_4 X C_4 is (x(1)^4 + x(2)^2 + 2*x(4))^2 = x(1)^8 + 2*x(1)^4*x(2)^2 + 4*x(1)^4*x(4) + x(2)^4 + 4*x(2)^2*x(4) + 4*x(4)^2 and C_4 X C_4 has 1 element of order 1, 3 elements of order 2 and 12 elements of order 4. So a(4) = 1/phi(1) + 3/phi(2) + 12/phi(4) = 10, where phi = Euler totient function, cf. A000010. - _Vladeta Jovovic_, Jul 05 2001
For a(4) the pairs (e,d) are (1,4),(2,4),(4,4),(4,2),(4,1) with gcds 1,2,4,2,1 resp. giving 10 in total. - _Thomas Ward_, Apr 08 2009
		

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do:ans := 1:for i from 1 to nops(ifactors(n)[2]) do p := ifactors(n)[2][i][1]:e := ifactors(n)[2][i][2]:ans := ans*(p^(e+1)+p^e-2)/(p-1):od:printf(`%d,`,ans):od:
  • Mathematica
    Table[ Plus @@ Map[ Times @@ (EulerPhi /@ #)/EulerPhi[ LCM @@ # ] &, Flatten[ Outer[ {##} &, Divisors[ i ], Divisors[ i ] ], 1 ] ], {i, 1, 100} ]
    f[p_, e_] := (p^(e+1)+p^e-2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n) = sumdiv(n, d,  2^omega(d)*(n/d) ); \\ Joerg Arndt, Sep 16 2012
  • Sage
    def A060648(n) :
        def dedekind_psi(n) : return n*mul(1+1/p for p in prime_divisors(n))
        return reduce(lambda x,y: x+y, [dedekind_psi(d) for d in divisors(n)])
    [A060648(n) for n in (1..64)]  # Peter Luschny, Sep 10 2012
    

Formula

a(n) is multiplicative: if the canonical factorization of n is the product of p^e(p) over primes then a(n) = product a(p^e(p)). If n = p^e, p prime, a(n) = (p^(e+1)+p^e-2)/(p-1).
a(n) = Sum_{i|n, j|n} phi(i)*phi(j)/phi(lcm(i, j)). - Vladeta Jovovic, Jul 07 2001
a(n) = Sum_{i|n, j|n} phi(gcd(i, j)).
a(n) = Sum_{d|n} phi(n/d)*tau(d^2).
a(n) = sum(d|n, sigma(d)*moebius(n/d)^2 ). - Benoit Cloitre, Sep 08 2002
Inverse Euler transform of A156302. - Vladeta Jovovic, Feb 14 2009
Moebius transform of A060724. - Vladeta Jovovic, Apr 05 2009
Also a(n) = (1/n)*Sum_{d|n} sigma(d)^2*moebius(n/d). - Vladeta Jovovic, Mar 31 2009
Inverse Moebius transform of A001615. - Vladeta Jovovic, Apr 05 2009
From Thomas Ward, Apr 08 2009: (Start)
a(n) = Sum_{lcm(e,d)=n} gcd(e,d).
Dirichlet g.f.: zeta(s)^2*zeta(s-1)/zeta(2s). (End)
For the proofs of these formulas see the papers of L. Toth.
a(n) = Sum_{d|n} psi(d), where psi is Dedekind's psi function A001615. - Peter Luschny, Sep 10 2012
a(n) = Sum_{d|n} 2^omega(d)*(n/d). - Peter Luschny, Sep 15 2012
Sum_{k=1..n} a(k) ~ (5/4) * n^2. - Amiram Eldar, Oct 19 2022
a(n) = Sum_{k=1..n} tau(gcd(n,k)^2). - Ridouane Oudra, Apr 10 2023
a(n) = Sum_{d divides n} J_2(d)/phi(d) = Sum_{1 <= i, j <= n} 1/phi(n/gcd(i,j,n)), where the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 23 2024

Extensions

More terms and additional comments from Vladeta Jovovic, Jul 05 2001

A064969 Number of cyclic subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 8, 14, 36, 32, 112, 58, 148, 131, 256, 134, 504, 184, 464, 448, 596, 308, 1048, 382, 1152, 812, 1072, 554, 2072, 807, 1472, 1184, 2088, 872, 3584, 994, 2388, 1876, 2464, 1856, 4716, 1408, 3056, 2576, 4736, 1724, 6496, 1894, 4824, 4192, 4432, 2258, 8344
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 30 2001

Keywords

Comments

Inverse Moebius transform of A160889. - Vladeta Jovovic, Nov 21 2009

Crossrefs

Programs

  • Maple
    with(numtheory):
    # define Jordan totient function J(r,n)
    J(r,n) := add(d^r*mobius(n/d), d in divisors(n)):
    seq(add(J(3,d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
  • Mathematica
    a[n_] := Sum[EulerPhi[i] EulerPhi[j] (EulerPhi[k] / EulerPhi[LCM[i, j, k]]), {i, Divisors[n]}, {j, Divisors[n]}, {k, Divisors[n]}];
    Array[a, 48] (* Jean-François Alcover, Dec 13 2018, after Vladeta Jovovic *)
    f[p_, e_] := 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, eulerphi(i)*eulerphi(j)*eulerphi(k)/eulerphi(lcm(lcm(i, j), k))))); \\ Michel Marcus, Dec 14 2018
    
  • PARI
    a160889(n) = sumdiv(n, d, moebius(n/d)*d^3)/eulerphi(n);
    a(n) = sumdiv(n, d, a160889(d)); \\ Seiichi Manyama, May 12 2021

Formula

a(n) = Sum_{i|n, j|n, k|n} phi(i)*phi(j)*phi(k)/phi(lcm(i, j, k)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = A002117 * A330595 / 3 = 0.700772... . (End)
a(n) = Sum_{d divides n} J_3(d)/phi(d) = Sum_{1 <= i, j, k <= n} 1/phi(n/gcd(i,j,k,n)), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 23 2024

Extensions

Formula and more terms from Vladeta Jovovic, Oct 30 2001

A344219 Number of cyclic subgroups of the group (C_n)^5, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 32, 122, 528, 782, 3904, 2802, 8464, 9923, 25024, 16106, 64416, 30942, 89664, 95404, 135440, 88742, 317536, 137562, 412896, 341844, 515392, 292562, 1032608, 488907, 990144, 803804, 1479456, 732542, 3052928, 954306, 2167056, 1964932, 2839744, 2191164, 5239344, 1926222
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Comments

Inverse Moebius transform of A160893.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, eulerphi(i)*eulerphi(j)*eulerphi(k)*eulerphi(l)*eulerphi(m)/eulerphi(lcm([i, j, k, l, m])))))));
    
  • PARI
    a160893(n) = sumdiv(n, d, moebius(n/d)*d^5)/eulerphi(n);
    a(n) = sumdiv(n, d, a160893(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} phi(x_1)*phi(x_2)*phi(x_3)*phi(x_4)*phi(x_5)/phi(lcm(x_1, x_2, x_3, x_4, x_5)).
If p is prime, a(p) = 1 + (p^5 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3939461744... . (End)

A344302 Number of cyclic subgroups of the group (C_n)^6, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 64, 365, 2080, 3907, 23360, 19609, 66592, 88817, 250048, 177157, 759200, 402235, 1254976, 1426055, 2130976, 1508599, 5684288, 2613661, 8126560, 7157285, 11338048, 6728905, 24306080, 12210157, 25743040, 21582653, 40786720, 21243691, 91267520, 29583457
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160895.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^6 - 1)/(p - 1))*((p^(5*e) - 1)/(p^5 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160895(n) = sumdiv(n, d, moebius(n/d)*d^6)/eulerphi(n);
    a(n) = sumdiv(n, d, a160895(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_6|n} phi(x_1)*phi(x_2)* ... *phi(x_6)/phi(lcm(x_1, x_2, ..., x_6)).
If p is prime, a(p) = 1 + (p^6 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^6 - 1)/(p - 1))*((p^(5*e) - 1)/(p^5 - 1)).
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)/6) * Product_{p prime} ((1-1/p^5)/(p^2*(1-1/p))) = 0.32592074105... . (End)

A344303 Number of cyclic subgroups of the group (C_n)^7, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 128, 1094, 8256, 19532, 140032, 137258, 528448, 797891, 2500096, 1948718, 9032064, 5229044, 17569024, 21368008, 33820736, 25646168, 102130048, 49659542, 161256192, 150160252, 249435904, 154764794, 578122112, 305191407, 669317632, 581662904, 1133202048
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160897.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^7 - 1)/(p - 1))*((p^(6*e) - 1)/(p^6 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160897(n) = sumdiv(n, d, moebius(n/d)*d^7)/eulerphi(n);
    a(n) = sumdiv(n, d, a160897(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_7|n} phi(x_1)*phi(x_2)* ... *phi(x_7)/phi(lcm(x_1, x_2, ..., x_7)).
If p is prime, a(p) = 1 + (p^7 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^7 - 1)/(p - 1))*((p^(6*e) - 1)/(p^6 - 1)).
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)/7) * Product_{p prime} ((1-1/p^6)/(p^2*(1-1/p))) = 0.2784611791... . (End)

A344304 Number of cyclic subgroups of the group (C_n)^8, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 256, 3281, 32896, 97657, 839936, 960801, 4210816, 7176641, 25000192, 21435889, 107931776, 67977561, 245965056, 320412617, 538984576, 435984841, 1837220096, 943531281, 3212524672, 3152388081, 5487587584, 3559590241, 13815687296, 7629472657, 17402255616
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160908.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160908(n) = sumdiv(n, d, moebius(n/d)*d^8)/eulerphi(n);
    a(n) = sumdiv(n, d, a160908(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_8|n} phi(x_1)*phi(x_2)* ... *phi(x_8)/phi(lcm(x_1, x_2, ..., x_8)).
If p is prime, a(p) = 1 + (p^8 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)).
Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)/8) * Product_{p prime} ((1-1/p^7)/(p^2*(1-1/p))) = 0.2432888374... . (End)

A344305 Number of cyclic subgroups of the group (C_n)^9, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 512, 9842, 131328, 488282, 5039104, 6725602, 33620224, 64576643, 250000384, 235794770, 1292530176, 883708282, 3443508224, 4805671444, 8606777600, 7411742282, 33063241216, 17927094322, 64125098496, 66193374884, 120726922240, 81870575522, 330890244608
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160953.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160953(n) = sumdiv(n, d, moebius(n/d)*d^9)/eulerphi(n);
    a(n) = sumdiv(n, d, a160953(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_9|n} phi(x_1)*phi(x_2)* ... *phi(x_9)/phi(lcm(x_1, x_2, ..., x_9)).
If p is prime, a(p) = 1 + (p^9 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)).
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)/9) * Product_{p prime} ((1-1/p^8)/(p^2*(1-1/p))) = 0.2161023934... . (End)

A344306 Number of cyclic subgroups of the group (C_n)^10, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 1024, 29525, 524800, 2441407, 30233600, 47079209, 268698112, 581150417, 2500000768, 2593742461, 15494720000, 11488207655, 48209110016, 72082541675, 137573433856, 125999618779, 595098027008, 340614792101, 1281250393600
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160957.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160957(n) = sumdiv(n, d, moebius(n/d)*d^10)/eulerphi(n);
    a(n) = sumdiv(n, d, a160957(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_10|n} phi(x_1)*phi(x_2)* ... *phi(x_10)/phi(lcm(x_1, x_2, ..., x_10)).
If p is prime, a(p) = 1 + (p^10 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)/10) * Product_{p prime} ((1-1/p^9)/(p^2*(1-1/p))) = 0.1944248708... . (End)

A344201 Number of cyclic subgroups of the group (C_n)^n, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 4, 14, 136, 782, 23360, 137258, 4210816, 64576643, 2500000768, 28531167062, 2229573502976, 25239592216022, 1852001137606656, 54736740117685528, 2305878194659557376, 51702516367896047762, 6557734713069408616448, 109912203092239643840222
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := DivisorSum[n, MoebiusMu[n/#] * #^k &] / EulerPhi[n]; a[n_] := DivisorSum[n, b[#, n] &]; Array[a, 20] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    b(n, k) = sumdiv(n, d, moebius(n/d)*d^k)/eulerphi(n);
    a(n) = sumdiv(n, d, b(d, n));

Formula

a(n) = Sum_{x_1|n, x_2|n, ... , x_n|n} phi(x_1)*phi(x_2)* ... *phi(x_n)/phi(lcm(x_1, x_2, ... , x_n)).
a(n) = Sum_{d|n} b(d, n), where b(n, k) = ( Sum_{d|n} mu(n/d) * d^k )/phi(n).
If p is prime, a(p) = 1 + (p^p - 1)/(p - 1).
Showing 1-9 of 9 results.