cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A060648 Number of cyclic subgroups of the group C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 4, 5, 10, 7, 20, 9, 22, 17, 28, 13, 50, 15, 36, 35, 46, 19, 68, 21, 70, 45, 52, 25, 110, 37, 60, 53, 90, 31, 140, 33, 94, 65, 76, 63, 170, 39, 84, 75, 154, 43, 180, 45, 130, 119, 100, 49, 230, 65, 148, 95, 150, 55, 212, 91, 198, 105, 124, 61, 350, 63, 132, 153, 190
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001

Keywords

Comments

The group U(n) of units modulo n acts on the direct product (Z_n)^k by multiplication. The number g(n,k) of orbits of U(n) acting on Z/(n)^k is g(n,k) = (1/phi(n))*Sum(gcd(n,a-1)^k) where the sum is over a in U(n) and phi(n) is the Euler totient function. A060648 gives g(n,2). - W. Edwin Clark, Jul 20 2001
a(n) is also the number of orbits of length n for the map TxT (Cartesion product) where T is a map with one orbit of each length. - Thomas Ward, Apr 08 2009

Examples

			The cycle index of C_4 X C_4 is (x(1)^4 + x(2)^2 + 2*x(4))^2 = x(1)^8 + 2*x(1)^4*x(2)^2 + 4*x(1)^4*x(4) + x(2)^4 + 4*x(2)^2*x(4) + 4*x(4)^2 and C_4 X C_4 has 1 element of order 1, 3 elements of order 2 and 12 elements of order 4. So a(4) = 1/phi(1) + 3/phi(2) + 12/phi(4) = 10, where phi = Euler totient function, cf. A000010. - _Vladeta Jovovic_, Jul 05 2001
For a(4) the pairs (e,d) are (1,4),(2,4),(4,4),(4,2),(4,1) with gcds 1,2,4,2,1 resp. giving 10 in total. - _Thomas Ward_, Apr 08 2009
		

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do:ans := 1:for i from 1 to nops(ifactors(n)[2]) do p := ifactors(n)[2][i][1]:e := ifactors(n)[2][i][2]:ans := ans*(p^(e+1)+p^e-2)/(p-1):od:printf(`%d,`,ans):od:
  • Mathematica
    Table[ Plus @@ Map[ Times @@ (EulerPhi /@ #)/EulerPhi[ LCM @@ # ] &, Flatten[ Outer[ {##} &, Divisors[ i ], Divisors[ i ] ], 1 ] ], {i, 1, 100} ]
    f[p_, e_] := (p^(e+1)+p^e-2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n) = sumdiv(n, d,  2^omega(d)*(n/d) ); \\ Joerg Arndt, Sep 16 2012
  • Sage
    def A060648(n) :
        def dedekind_psi(n) : return n*mul(1+1/p for p in prime_divisors(n))
        return reduce(lambda x,y: x+y, [dedekind_psi(d) for d in divisors(n)])
    [A060648(n) for n in (1..64)]  # Peter Luschny, Sep 10 2012
    

Formula

a(n) is multiplicative: if the canonical factorization of n is the product of p^e(p) over primes then a(n) = product a(p^e(p)). If n = p^e, p prime, a(n) = (p^(e+1)+p^e-2)/(p-1).
a(n) = Sum_{i|n, j|n} phi(i)*phi(j)/phi(lcm(i, j)). - Vladeta Jovovic, Jul 07 2001
a(n) = Sum_{i|n, j|n} phi(gcd(i, j)).
a(n) = Sum_{d|n} phi(n/d)*tau(d^2).
a(n) = sum(d|n, sigma(d)*moebius(n/d)^2 ). - Benoit Cloitre, Sep 08 2002
Inverse Euler transform of A156302. - Vladeta Jovovic, Feb 14 2009
Moebius transform of A060724. - Vladeta Jovovic, Apr 05 2009
Also a(n) = (1/n)*Sum_{d|n} sigma(d)^2*moebius(n/d). - Vladeta Jovovic, Mar 31 2009
Inverse Moebius transform of A001615. - Vladeta Jovovic, Apr 05 2009
From Thomas Ward, Apr 08 2009: (Start)
a(n) = Sum_{lcm(e,d)=n} gcd(e,d).
Dirichlet g.f.: zeta(s)^2*zeta(s-1)/zeta(2s). (End)
For the proofs of these formulas see the papers of L. Toth.
a(n) = Sum_{d|n} psi(d), where psi is Dedekind's psi function A001615. - Peter Luschny, Sep 10 2012
a(n) = Sum_{d|n} 2^omega(d)*(n/d). - Peter Luschny, Sep 15 2012
Sum_{k=1..n} a(k) ~ (5/4) * n^2. - Amiram Eldar, Oct 19 2022
a(n) = Sum_{k=1..n} tau(gcd(n,k)^2). - Ridouane Oudra, Apr 10 2023
a(n) = Sum_{d divides n} J_2(d)/phi(d) = Sum_{1 <= i, j <= n} 1/phi(n/gcd(i,j,n)), where the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 23 2024

Extensions

More terms and additional comments from Vladeta Jovovic, Jul 05 2001

A280184 Number of cyclic subgroups of the group C_n x C_n x C_n x C_n, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 16, 41, 136, 157, 656, 401, 1096, 1121, 2512, 1465, 5576, 2381, 6416, 6437, 8776, 5221, 17936, 7241, 21352, 16441, 23440, 12721, 44936, 19657, 38096, 30281, 54536, 25261, 102992, 30785, 70216, 60065, 83536, 62957, 152456, 52061, 115856, 97621, 172072, 70645, 263056, 81401, 199240, 175997, 203536, 106081, 359816, 137601, 314512
Offset: 1

Views

Author

Laszlo Toth, Dec 28 2016

Keywords

Comments

Inverse Moebius transform of A160891. - Seiichi Manyama, May 12 2021

Crossrefs

Programs

  • Maple
    with(numtheory):
    # define Jordan totient function J(r,n)
    J(r,n) := add(d^r*mobius(n/d), d in divisors(n)):
    seq(add(J(4,d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
  • Mathematica
    a[n_] := With[{dd = Divisors[n]}, Sum[Times @@ EulerPhi @ {x, y, z, t} / EulerPhi[LCM[x, y, z, t]], {x, dd}, {y, dd}, {z, dd}, {t, dd}]];
    Array[a, 50] (* Jean-François Alcover, Sep 28 2018 *)
    f[p_, e_] := 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, x, sumdiv(n, y, sumdiv(n, z, sumdiv(n, t, eulerphi(x)*eulerphi(y)*eulerphi(z)*eulerphi(t)/eulerphi(lcm([x, y, z, t])))))); \\ Michel Marcus, Feb 26 2018
    
  • PARI
    a160891(n) = sumdiv(n, d, moebius(n/d)*d^4)/eulerphi(n);
    a(n) = sumdiv(n, d, a160891(d)); \\ Seiichi Manyama, May 12 2021

Formula

a(n) = Sum_{a|n, b|n, c|n, d|n} phi(a)*phi(b)*phi(c)*phi(d)/phi(lcm(a, b, c, d)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.5010902655... . (End)
a(n) = Sum_{d divides n} J_4(d)/phi(d) = Sum_{1 <= i, j, k, l <= n} 1/phi(n/gcd(i,j,k,l,n)), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 23 2024

A344219 Number of cyclic subgroups of the group (C_n)^5, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 32, 122, 528, 782, 3904, 2802, 8464, 9923, 25024, 16106, 64416, 30942, 89664, 95404, 135440, 88742, 317536, 137562, 412896, 341844, 515392, 292562, 1032608, 488907, 990144, 803804, 1479456, 732542, 3052928, 954306, 2167056, 1964932, 2839744, 2191164, 5239344, 1926222
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Comments

Inverse Moebius transform of A160893.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, eulerphi(i)*eulerphi(j)*eulerphi(k)*eulerphi(l)*eulerphi(m)/eulerphi(lcm([i, j, k, l, m])))))));
    
  • PARI
    a160893(n) = sumdiv(n, d, moebius(n/d)*d^5)/eulerphi(n);
    a(n) = sumdiv(n, d, a160893(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} phi(x_1)*phi(x_2)*phi(x_3)*phi(x_4)*phi(x_5)/phi(lcm(x_1, x_2, x_3, x_4, x_5)).
If p is prime, a(p) = 1 + (p^5 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3939461744... . (End)

A160889 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 4.

Original entry on oeis.org

1, 7, 13, 28, 31, 91, 57, 112, 117, 217, 133, 364, 183, 399, 403, 448, 307, 819, 381, 868, 741, 931, 553, 1456, 775, 1281, 1053, 1596, 871, 2821, 993, 1792, 1729, 2149, 1767, 3276, 1407, 2667, 2379, 3472, 1723, 5187, 1893, 3724, 3627, 3871, 2257, 5824, 2793
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

Dirichlet convolution of A000290 and the series of absolute values of A063441. - R. J. Mathar, Jun 20 2011
a(n) is the number of lattices L in Z^3 such that the quotient group Z^3 / L is C_nm x C_m x C_m (and also C_nm x C_nm x C_m), for every m>=1. - Álvar Ibeas, Oct 30 2015

Examples

			There are 35 = A160870(4,3) lattices of volume 4 in Z^3. Among them, 28 give the quotient group C_4 and 7 give the quotient group C_2 x C_2. Hence, a(4) = 28 and a(2) = 7.
There are 2667 = A160870(32,3) lattices of volume 32 in Z^3. Among them, a(32) = 1792 give the quotient group C_32 (m=1); a(4) = 28 give C_8 x C_2 x C_2 (m=2); a(2) = 7 give C_4 x C_4 x C_2 (m=2).
		

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

Crossrefs

Programs

  • Mathematica
    A160889[n_]:=DivisorSum[n,MoebiusMu[n/# ]*#^(4-1)/EulerPhi[n]&] (* Enrique Pérez Herrero, Aug 22 2010 *)
  • PARI
    vector(100, n, sumdiv(n^2, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n^2/d), 0))) \\ Altug Alkan, Oct 30 2015

Formula

Moebius transform of A064969. Multiplicative with a(p^e) = (p^2+p+1)*p^(2*e-2). - Vladeta Jovovic, Nov 21 2009
a(n) = J_3(n)/J_1(n)=J_3(n)/phi(n)=A059376(n)/A000010(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Aug 22 2010
Dirichlet g.f.: zeta(s-2)*product_{primes p} (1+p^(1-s)+p^(-s)). - R. J. Mathar, Jun 20 2011
From Álvar Ibeas, Oct 30 2015: (Start)
a(n) = A254981(n^2). For squarefree n, a(n) = A000203(n^2).
a(n) = Sum_{d|n, n/d squarefree} d^2 * A000203(n/d).
(End)
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.748932997843245303033906997685114802259883493595480897273662144... - Vaclav Kotesovec, Dec 18 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/((p^2-1) * (p^2 + p + 1))) = 1.400940662893945919882073637564538872630336562726971915578687405304250550... - Vaclav Kotesovec, Sep 19 2020
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^3). - Ridouane Oudra, Mar 26 2025

Extensions

Definition corrected by Vladeta Jovovic, Nov 21 2009
Typo in Mathematica program and formula fixed by Enrique Pérez Herrero, Oct 19 2010

A344302 Number of cyclic subgroups of the group (C_n)^6, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 64, 365, 2080, 3907, 23360, 19609, 66592, 88817, 250048, 177157, 759200, 402235, 1254976, 1426055, 2130976, 1508599, 5684288, 2613661, 8126560, 7157285, 11338048, 6728905, 24306080, 12210157, 25743040, 21582653, 40786720, 21243691, 91267520, 29583457
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160895.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^6 - 1)/(p - 1))*((p^(5*e) - 1)/(p^5 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160895(n) = sumdiv(n, d, moebius(n/d)*d^6)/eulerphi(n);
    a(n) = sumdiv(n, d, a160895(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_6|n} phi(x_1)*phi(x_2)* ... *phi(x_6)/phi(lcm(x_1, x_2, ..., x_6)).
If p is prime, a(p) = 1 + (p^6 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^6 - 1)/(p - 1))*((p^(5*e) - 1)/(p^5 - 1)).
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)/6) * Product_{p prime} ((1-1/p^5)/(p^2*(1-1/p))) = 0.32592074105... . (End)

A344303 Number of cyclic subgroups of the group (C_n)^7, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 128, 1094, 8256, 19532, 140032, 137258, 528448, 797891, 2500096, 1948718, 9032064, 5229044, 17569024, 21368008, 33820736, 25646168, 102130048, 49659542, 161256192, 150160252, 249435904, 154764794, 578122112, 305191407, 669317632, 581662904, 1133202048
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160897.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^7 - 1)/(p - 1))*((p^(6*e) - 1)/(p^6 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160897(n) = sumdiv(n, d, moebius(n/d)*d^7)/eulerphi(n);
    a(n) = sumdiv(n, d, a160897(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_7|n} phi(x_1)*phi(x_2)* ... *phi(x_7)/phi(lcm(x_1, x_2, ..., x_7)).
If p is prime, a(p) = 1 + (p^7 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^7 - 1)/(p - 1))*((p^(6*e) - 1)/(p^6 - 1)).
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)/7) * Product_{p prime} ((1-1/p^6)/(p^2*(1-1/p))) = 0.2784611791... . (End)

A344304 Number of cyclic subgroups of the group (C_n)^8, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 256, 3281, 32896, 97657, 839936, 960801, 4210816, 7176641, 25000192, 21435889, 107931776, 67977561, 245965056, 320412617, 538984576, 435984841, 1837220096, 943531281, 3212524672, 3152388081, 5487587584, 3559590241, 13815687296, 7629472657, 17402255616
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160908.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160908(n) = sumdiv(n, d, moebius(n/d)*d^8)/eulerphi(n);
    a(n) = sumdiv(n, d, a160908(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_8|n} phi(x_1)*phi(x_2)* ... *phi(x_8)/phi(lcm(x_1, x_2, ..., x_8)).
If p is prime, a(p) = 1 + (p^8 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^8 - 1)/(p - 1))*((p^(7*e) - 1)/(p^7 - 1)).
Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)/8) * Product_{p prime} ((1-1/p^7)/(p^2*(1-1/p))) = 0.2432888374... . (End)

A344305 Number of cyclic subgroups of the group (C_n)^9, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 512, 9842, 131328, 488282, 5039104, 6725602, 33620224, 64576643, 250000384, 235794770, 1292530176, 883708282, 3443508224, 4805671444, 8606777600, 7411742282, 33063241216, 17927094322, 64125098496, 66193374884, 120726922240, 81870575522, 330890244608
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160953.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160953(n) = sumdiv(n, d, moebius(n/d)*d^9)/eulerphi(n);
    a(n) = sumdiv(n, d, a160953(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_9|n} phi(x_1)*phi(x_2)* ... *phi(x_9)/phi(lcm(x_1, x_2, ..., x_9)).
If p is prime, a(p) = 1 + (p^9 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^9 - 1)/(p - 1))*((p^(8*e) - 1)/(p^8 - 1)).
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)/9) * Product_{p prime} ((1-1/p^8)/(p^2*(1-1/p))) = 0.2161023934... . (End)

A344306 Number of cyclic subgroups of the group (C_n)^10, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 1024, 29525, 524800, 2441407, 30233600, 47079209, 268698112, 581150417, 2500000768, 2593742461, 15494720000, 11488207655, 48209110016, 72082541675, 137573433856, 125999618779, 595098027008, 340614792101, 1281250393600
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160957.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160957(n) = sumdiv(n, d, moebius(n/d)*d^10)/eulerphi(n);
    a(n) = sumdiv(n, d, a160957(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_10|n} phi(x_1)*phi(x_2)* ... *phi(x_10)/phi(lcm(x_1, x_2, ..., x_10)).
If p is prime, a(p) = 1 + (p^10 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^10 - 1)/(p - 1))*((p^(9*e) - 1)/(p^9 - 1)).
Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)/10) * Product_{p prime} ((1-1/p^9)/(p^2*(1-1/p))) = 0.1944248708... . (End)

A344201 Number of cyclic subgroups of the group (C_n)^n, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 4, 14, 136, 782, 23360, 137258, 4210816, 64576643, 2500000768, 28531167062, 2229573502976, 25239592216022, 1852001137606656, 54736740117685528, 2305878194659557376, 51702516367896047762, 6557734713069408616448, 109912203092239643840222
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := DivisorSum[n, MoebiusMu[n/#] * #^k &] / EulerPhi[n]; a[n_] := DivisorSum[n, b[#, n] &]; Array[a, 20] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    b(n, k) = sumdiv(n, d, moebius(n/d)*d^k)/eulerphi(n);
    a(n) = sumdiv(n, d, b(d, n));

Formula

a(n) = Sum_{x_1|n, x_2|n, ... , x_n|n} phi(x_1)*phi(x_2)* ... *phi(x_n)/phi(lcm(x_1, x_2, ... , x_n)).
a(n) = Sum_{d|n} b(d, n), where b(n, k) = ( Sum_{d|n} mu(n/d) * d^k )/phi(n).
If p is prime, a(p) = 1 + (p^p - 1)/(p - 1).
Showing 1-10 of 10 results.