cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A306775 Partial sums of A060648: sum of the inverse Moebius transform of the Dedekind psi function from 1 to n.

Original entry on oeis.org

1, 5, 10, 20, 27, 47, 56, 78, 95, 123, 136, 186, 201, 237, 272, 318, 337, 405, 426, 496, 541, 593, 618, 728, 765, 825, 878, 968, 999, 1139, 1172, 1266, 1331, 1407, 1470, 1640, 1679, 1763, 1838, 1992, 2035, 2215, 2260, 2390, 2509, 2609, 2658, 2888, 2953, 3101
Offset: 1

Views

Author

Daniel Suteu, Mar 09 2019

Keywords

Comments

In general, for m >= 1, Sum_{k=1..n} Sum_{d|k} psi_m(d) = Sum_{k=1..n} k^m * A064608(floor(n/k)), where psi_m(d) is the generalized Dedekind psi function.
Additionally, for m >= 1, Sum_{k=1..n} Sum_{d|k} psi_m(d) ~ (n^(m+1) * zeta(m+1)^2) / ((m+1) * zeta(2*(m+1))).

Crossrefs

Programs

  • Maple
    with(numtheory): psi := n -> n*mul(1+1/p, p in factorset(n)):
    seq(add(psi(i)*floor(n/i), i=1..n), n=1..80); # Ridouane Oudra, Aug 27 2019
  • Mathematica
    Accumulate[Table[Sum[EulerPhi[n/d] * DivisorSigma[0, d^2], {d, Divisors[n]}], {n, 1, 100}]] (* Vaclav Kotesovec, Oct 09 2019 *)
  • PARI
    a(n) = sum(k=1, n, 2^omega(k) * (n\k) * (1+n\k))/2;

Formula

a(n) ~ (5/4) * n^2.
a(n) = Sum_{k=1..n} A060648(k).
a(n) = Sum_{k=1..n} Sum_{d|k} A001615(d).
a(n) = Sum_{k=1..n} k * A064608(floor(n/k)).
a(n) = (1/2)*Sum_{k=1..n} 2^omega(k) * floor(n/k) * floor(1+n/k).
a(n) = Sum_{k=1..n} A001615(k)*floor(n/k). - Ridouane Oudra, Aug 27 2019

A307227 Numbers k such that A060648(k) is divisible by k.

Original entry on oeis.org

1, 2, 105, 210, 20349, 36075, 40698, 72150, 7162155, 9258795, 14324310, 18517590, 117972855, 156818025, 235945710, 313636050, 5448196215, 10896392430
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2019

Keywords

Comments

If k is an odd term of this sequence then 2*k is also a term.
The quotients A060648(a(n))/a(n) are 1, 2, 3, 6, 3, 3, 6, 6, 5, 5, 10, 10, 5, 5, 10, 10, ...
Also terms are: 75293843625, 89741043315, 150587687250, 179482086630, 459768040875, 919536081750, 1871844556725, 3743689113450, 30832458453225, 57275447662125, 61664916906450, 114550895324250. - David A. Corneth, Mar 29 2019

Crossrefs

Cf. A060648.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) + p^e - 2)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; aQ[n_] := Divisible[a[n], n]; Select[Range[10^7], aQ]
  • PARI
    f(n) = sumdiv(n, d,  2^omega(d)*(n/d) ); \\ A060648
    isok(n) = !(f(n) % n); \\ Michel Marcus, Mar 30 2019
    
  • PARI
    \\ for is(n), see isok(n) above \\ David A. Corneth, Mar 30 2019
    A060648(n) = {my(f = factor(n), res = 1); for(i = 1, #f~, res *= (f[i, 1]^(f[i, 2]+1)+f[i, 1]^f[i, 2]-2)/(f[i, 1]-1)); res} \\ David A. Corneth, Mar 30 2019

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A062011 a(n) = 2*tau(n) = 2*A000005(n).

Original entry on oeis.org

2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 12, 4, 8, 8, 10, 4, 12, 4, 12, 8, 8, 4, 16, 6, 8, 8, 12, 4, 16, 4, 12, 8, 8, 8, 18, 4, 8, 8, 16, 4, 16, 4, 12, 12, 8, 4, 20, 6, 12, 8, 12, 4, 16, 8, 16, 8, 8, 4, 24, 4, 8, 12, 14, 8, 16, 4, 12, 8, 16, 4, 24, 4, 8, 12, 12, 8, 16, 4, 20, 10, 8, 4, 24, 8, 8, 8, 16
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001

Keywords

Comments

Old definition was "Number of cyclic subgroups of the group C_n X C_2 (where C_n is the cyclic group with n elements)."
More generally, the number of cyclic subgroups of the group C_n X C_m is Sum_{i|n, j|m} phi(i)*phi(j)/phi(lcm(i,j)), where phi=Euler totient function, cf. A000010. - Vladeta Jovovic, Jul 15 2001
Number of divisors of p*n, where p is any prime not dividing n. - Reinhard Zumkeller, May 17 2006
From Enrique Pérez Herrero, Jul 21 2011: (Start)
If p(x) is a polynomial with integer coefficients, and if r is an integer zero of p(x), then r is a divisor of the constant term c_0 of p(x). Under this theorem, p(x) can have a(c_0) possible integer roots.
a(n) is the number of integer divisors of n, while A000005(n) is the number of positive divisors. (End)
Number of solutions to the Diophantine equation i*j = n*i + j. - Robert G. Wilson v, Apr 10 2019
a(n) is also the number of times n appears in the triangle A333119, or equivalently, the number of positive integer solutions of the equation A333119(x, y) = n for y < x. - Stefano Spezia, Oct 05 2022

Crossrefs

Programs

Formula

a(n) = A000005(A087560(n)) = A000005(A119416(n)). - Reinhard Zumkeller, May 17 2006
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018

Extensions

More terms from Vladeta Jovovic, Jul 14 2001
Edited by N. J. A. Sloane, Sep 20 2018, replacing old definition (which was of course correct) with a simple formula.

A060724 Number of subgroups of the group C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 5, 6, 15, 8, 30, 10, 37, 23, 40, 14, 90, 16, 50, 48, 83, 20, 115, 22, 120, 60, 70, 26, 222, 45, 80, 76, 150, 32, 240, 34, 177, 84, 100, 80, 345, 40, 110, 96, 296, 44, 300, 46, 210, 184, 130, 50, 498, 75, 225, 120, 240, 56, 380, 112, 370, 132, 160, 62, 720, 64
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

Keywords

Examples

			a(2) = 5 because for the group C_2 X C_2 there are the following subgroups: the trivial subgroup, the whole group and the three subgroups of order 2.
		

Crossrefs

Programs

  • GAP
    List([1..50], n->Sum(ConjugacyClassesSubgroups( LatticeSubgroups( DirectProduct( List([n, n], k->CyclicGroup(k)) ))), Size)); # Andrew Howroyd, Jul 01 2018
    
  • Maple
    for n from 1 to 200 do: ans := 1: for i from 1 to nops(ifactors(n)[2]) do p := ifactors(n)[2][i][1]: e := ifactors(n)[2][i][2]: ans := ans*(p^(e+2)+p^(e+1)+1+2*e-3*p-2*e*p)/(p-1)^2: od: printf(`%d,`,ans): od:
  • Mathematica
    ppCase[ {p_Integer, e_Integer} ] := (1-2*e*(p-1)+p*(p^e*(1+p)-3))/(p-1)^2; Table[ Times @@ (ppCase /@ FactorInteger[ i ]), {i, 1, 100} ]
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)*numdiv(d)^2)} \\ Andrew Howroyd, Jul 01 2018
    
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^2); \\ Seiichi Manyama, May 11 2021
    
  • Sage
    def A060724(n) :
        d = divisors(n); cp = cartesian_product([d, d])
        return reduce(lambda x,y: x+y, map(gcd, cp))
    [A060724(n) for n in (1..61)]   # Peter Luschny, Sep 10 2012

Formula

a(n) is multiplicative: if the canonical factorization of n is the product of p^e(p) over primes then a(n) = product a(p^e(p)). For a prime p: a(p) = p + 3.
a(p^e) = (p^(e+2)+p^(e+1)+1+2*e-3*p-2*e*p)/(p-1)^2.
a(n) = Sum_{i|n, j|n} gcd(i, j). - Vladeta Jovovic, Oct 28 2001
Also a(n) = Sum_{d|n} d*tau((n/d)^2). - Vladeta Jovovic, Apr 01 2002
Also a(n) = Sum_{d|n} phi(n/d)*tau(d)^2.
Inverse Moebius transform of A060648. - Vladeta Jovovic, Mar 31 2009
Dirichlet g.f. zeta^3(s)*zeta(s-1)/zeta(2*s). - R. J. Mathar, Mar 14 2011
a(n) = Sum_{d|n} psi(d)*tau(n/d), where psi is A001615 and tau is A000005. - Enrique Pérez Herrero, Feb 29 2012
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. - Vaclav Kotesovec, Jun 02 2019
a(n) = Sum_{k=1..n} tau(gcd(k,n))^2. - Seiichi Manyama, May 11 2021

Extensions

Formula and more terms from Vladeta Jovovic, Jul 06 2001

A062380 a(n) = Sum_{i|n,j|n} phi(i)*phi(j)/phi(gcd(i,j)), where phi is Euler totient function.

Original entry on oeis.org

1, 4, 7, 14, 13, 28, 19, 42, 37, 52, 31, 98, 37, 76, 91, 114, 49, 148, 55, 182, 133, 124, 67, 294, 113, 148, 163, 266, 85, 364, 91, 290, 217, 196, 247, 518, 109, 220, 259, 546, 121, 532, 127, 434, 481, 268, 139, 798, 229, 452, 343, 518, 157, 652, 403, 798, 385
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Comments

A176003 is a subsequence. - Peter Luschny, Sep 12 2012

Examples

			Let p be a prime then a(p) = phi(1)*tau(1)+phi(p)*tau(p^2) = 1+(p-1)*3 = 3*p-2. - _Peter Luschny_, Sep 12 2012
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n->  add(phi(d)*tau(d^2), d=divisors(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] DivisorSigma[0, #^2]&]; Array[a, 60] (* Jean-François Alcover, Dec 05 2015 *)
    f[p_, e_] := ((2*e+1)*p^(e+1) - (2*e+3)*p^e + 2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)=sumdiv(n,i,eulerphi(i)*sumdiv(n,j,eulerphi(j)/eulerphi(gcd(i,j)))) \\ Charles R Greathouse IV, Sep 12 2012
  • Sage
    def A062380(n) :
        d = divisors(n); cp = cartesian_product([d, d])
        return reduce(lambda x,y: x+y, map(euler_phi, map(lcm, cp)))
    [A062380(n) for n in (1..57)]  # Peter Luschny, Sep 10 2012
    

Formula

a(n) = Sum_{d|n} phi(d)*tau(d^2).
Multiplicative with a(p^e) = 1 + Sum_{k=1..e} (2k+1)(p^k-p^{k-1}) = ((2e+1)p^(e+1) - (2e+3)p^e+2)/(p-1). - Mitch Harris, May 24 2005
a(n) = Sum_{c|n,d|n} phi(lcm(c,d)). - Peter Luschny, Sep 10 2012
a(n) = Sum_{k=1..n} tau( (n/gcd(k,n))^2 ). - Seiichi Manyama, May 19 2024

A064969 Number of cyclic subgroups of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 8, 14, 36, 32, 112, 58, 148, 131, 256, 134, 504, 184, 464, 448, 596, 308, 1048, 382, 1152, 812, 1072, 554, 2072, 807, 1472, 1184, 2088, 872, 3584, 994, 2388, 1876, 2464, 1856, 4716, 1408, 3056, 2576, 4736, 1724, 6496, 1894, 4824, 4192, 4432, 2258, 8344
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 30 2001

Keywords

Comments

Inverse Moebius transform of A160889. - Vladeta Jovovic, Nov 21 2009

Crossrefs

Programs

  • Maple
    with(numtheory):
    # define Jordan totient function J(r,n)
    J(r,n) := add(d^r*mobius(n/d), d in divisors(n)):
    seq(add(J(3,d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
  • Mathematica
    a[n_] := Sum[EulerPhi[i] EulerPhi[j] (EulerPhi[k] / EulerPhi[LCM[i, j, k]]), {i, Divisors[n]}, {j, Divisors[n]}, {k, Divisors[n]}];
    Array[a, 48] (* Jean-François Alcover, Dec 13 2018, after Vladeta Jovovic *)
    f[p_, e_] := 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, eulerphi(i)*eulerphi(j)*eulerphi(k)/eulerphi(lcm(lcm(i, j), k))))); \\ Michel Marcus, Dec 14 2018
    
  • PARI
    a160889(n) = sumdiv(n, d, moebius(n/d)*d^3)/eulerphi(n);
    a(n) = sumdiv(n, d, a160889(d)); \\ Seiichi Manyama, May 12 2021

Formula

a(n) = Sum_{i|n, j|n, k|n} phi(i)*phi(j)*phi(k)/phi(lcm(i, j, k)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^2 + p + 1)*((p^(2*e) - 1)/(p^2 - 1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = A002117 * A330595 / 3 = 0.700772... . (End)
a(n) = Sum_{d divides n} J_3(d)/phi(d) = Sum_{1 <= i, j, k <= n} 1/phi(n/gcd(i,j,k,n)), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 23 2024

Extensions

Formula and more terms from Vladeta Jovovic, Oct 30 2001

A156302 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)^2*x^n/n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 5, 10, 30, 57, 152, 289, 676, 1304, 2809, 5335, 10961, 20487, 40329, 74476, 141914, 258094, 479638, 860025, 1563716, 2767982, 4940567, 8636563, 15173805, 26217392, 45416811, 77629455, 132800937, 224695510, 380079521, 637006921
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2009

Keywords

Comments

Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 10*x^3 + 30*x^4 + 57*x^5 + 152*x^6 +...
log(A(x)) = x + 3^2*x^2/2 + 4^2*x^3/3 + 7^2*x^4/4 + 6^2*x^5/5 + 12^2*x^6/6 +...
Also log(A(x)) = (x + 3*x^2 + 4*x^3 + 7*x^4 +...+ sigma(k)*x^k +...)/1 +
(3*x^2 + 7*x^4 + 12*x^6 + 15*x^8 + 18*x^10 +...+ sigma(2*k)*x^(2*k) +...)/2 +
(4*x^3 + 12*x^6 + 13*x^9 + 28*x^12 + 24*x^15 +...+ sigma(3*k)*x^(3*k) +...)/3 +
(7*x^4 + 15*x^8 + 28*x^12 + 31*x^16 + 42*x^20 +...+ sigma(4*k)*x^(4*k) +...)/4 +
(6*x^5 + 18*x^10 + 24*x^15 + 42*x^20 + 31*x^25 +...+ sigma(5*k)*x^(5*k) +...)/5 +...
		

Crossrefs

Cf. A000203 (sigma), A000041 (partitions), A072861, A178933, A205797, A382125.

Programs

  • Mathematica
    nmax = 40; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[1, k]^2*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,sigma(k)^2*x^k/k)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k)^2*a(n-k)))}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,sum(k=1,n\m,sigma(m*k)*x^(m*k)/m)+x*O(x^n))),n)}

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k)^2*a(n-k) for n>0, with a(0) = 1.
Euler transform of A060648. [From Vladeta Jovovic, Feb 14 2009]
It appears that G.f.: A(x)=prod(n=1,infinity, E(x^n)^(-A001615(n))) where E(x) = prod(n=1,infinity,1-x^n). [From Joerg Arndt, Dec 30 2010]
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n*k) * x^(n*k) / n ). [From Paul D. Hanna, Jan 23 2012]
log(a(n)) ~ 3*(5*zeta(3))^(1/3) * n^(2/3) / 2. - Vaclav Kotesovec, Oct 29 2024

A175836 a(n) = Product_{i=1..n} psi(i) where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 72, 432, 5184, 41472, 497664, 5971968, 107495424, 1289945088, 30958682112, 433421549568, 10402117189632, 249650812551168, 5991619501228032, 107849151022104576, 3882569436795764736
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 18 2010

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A060648(gcd(i,j)) for 1 <= i,j <= n, note that A060648 is the Inverse Möbius transform of A001615. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Haskell
    a175836 n = a175836_list !! (n-1)
    a175836_list = scanl1 (*) a001615_list
    -- Reinhard Zumkeller, Mar 01 2014
  • Maple
    A175836 := proc(n) option remember; local p; `if`(n<2,1, n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end: # Peter Luschny, Feb 28 2014
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n];
    DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n];
    A175836[n_]:=Times@@DedekindPsi/@Range[n]
  • PARI
    a=direuler(p=2, 100, (1+X)/(1-p*X));for(i=2,#a,a[i]*=a[i-1]);a
    \\ Charles R Greathouse IV, Jul 29 2011
    

Formula

a(n) = A059381(n)/A001088(n).

A280184 Number of cyclic subgroups of the group C_n x C_n x C_n x C_n, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 16, 41, 136, 157, 656, 401, 1096, 1121, 2512, 1465, 5576, 2381, 6416, 6437, 8776, 5221, 17936, 7241, 21352, 16441, 23440, 12721, 44936, 19657, 38096, 30281, 54536, 25261, 102992, 30785, 70216, 60065, 83536, 62957, 152456, 52061, 115856, 97621, 172072, 70645, 263056, 81401, 199240, 175997, 203536, 106081, 359816, 137601, 314512
Offset: 1

Views

Author

Laszlo Toth, Dec 28 2016

Keywords

Comments

Inverse Moebius transform of A160891. - Seiichi Manyama, May 12 2021

Crossrefs

Programs

  • Maple
    with(numtheory):
    # define Jordan totient function J(r,n)
    J(r,n) := add(d^r*mobius(n/d), d in divisors(n)):
    seq(add(J(4,d)/phi(d), d in divisors(n)), n = 1..50); # Peter Bala, Jan 23 2024
  • Mathematica
    a[n_] := With[{dd = Divisors[n]}, Sum[Times @@ EulerPhi @ {x, y, z, t} / EulerPhi[LCM[x, y, z, t]], {x, dd}, {y, dd}, {z, dd}, {t, dd}]];
    Array[a, 50] (* Jean-François Alcover, Sep 28 2018 *)
    f[p_, e_] := 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, x, sumdiv(n, y, sumdiv(n, z, sumdiv(n, t, eulerphi(x)*eulerphi(y)*eulerphi(z)*eulerphi(t)/eulerphi(lcm([x, y, z, t])))))); \\ Michel Marcus, Feb 26 2018
    
  • PARI
    a160891(n) = sumdiv(n, d, moebius(n/d)*d^4)/eulerphi(n);
    a(n) = sumdiv(n, d, a160891(d)); \\ Seiichi Manyama, May 12 2021

Formula

a(n) = Sum_{a|n, b|n, c|n, d|n} phi(a)*phi(b)*phi(c)*phi(d)/phi(lcm(a, b, c, d)), where phi is Euler totient function (cf. A000010).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + (p^3 + p^2 + p + 1)*((p^(3*e) - 1)/(p^3 - 1)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)/4) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4) = 0.5010902655... . (End)
a(n) = Sum_{d divides n} J_4(d)/phi(d) = Sum_{1 <= i, j, k, l <= n} 1/phi(n/gcd(i,j,k,l,n)), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 23 2024
Showing 1-10 of 37 results. Next