cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A238498 Triangle read by rows: T(n,k) = A175836(n)/(A175836(k)* A175836(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 8, 6, 1, 1, 6, 12, 12, 6, 1, 1, 12, 24, 36, 24, 12, 1, 1, 8, 32, 48, 48, 32, 8, 1, 1, 12, 32, 96, 96, 96, 32, 12, 1, 1, 12, 48, 96, 192, 192, 96, 48, 12, 1, 1, 18, 72, 216, 288, 576, 288, 216, 72, 18, 1, 1, 12, 72, 216, 432, 576, 576, 432, 216, 72, 12, 1
Offset: 0

Views

Author

Tom Edgar, Feb 27 2014

Keywords

Comments

We assume that A175836(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Dedekind psi function A001615.
Another name might be the psi-nomial coefficients.

Examples

			The first five terms in the Dedekind psi function are 1,3,4,6,6 and so T(4,2) = 6*4*3*1/((3*1)*(3*1))=8 and T(5,3) = 6*6*4*3*1/((4*3*1)*(3*1))=12.
The triangle begins
1
1  1
1  3  1
1  4  4  1
1  6  8  6  1
1  6  12 12 6 1
		

Crossrefs

Programs

  • Haskell
    a238498 n k = a238498_tabl !! n !! k
    a238498_row n = a238498_tabl !! n
    a238498_tabl = [1] : f [1] a001615_list where
       f xs (z:zs) = (map (div y) $ zipWith (*) ys $ reverse ys) : f ys zs
         where ys = y : xs; y = head xs * z
    -- Reinhard Zumkeller, Mar 01 2014
  • Maple
    A175836 := proc(n) option remember; local p;
    `if`(n<2,1,n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end:
    A238498 := (n,k) -> A175836(n)/(A175836(k)*A175836(n-k)):
    seq(seq(A238498(n,k),k=0..n),n=0..10); # Peter Luschny, Feb 28 2014
  • Mathematica
    DedekindPsi[n_] := Sum[MoebiusMu[n/d] d^2 , {d, Divisors[n]}]/EulerPhi[n];
    (* b = A175836 *) b[n_] := Times @@ DedekindPsi /@ Range[n];
    T[n_, k_] := b[n]/(b[k] b[n-k]);
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jul 02 2019 *)
  • Sage
    q=100 #change q for more rows
    P=[0]+[i*prod([(1+1/x) for x in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
    

Formula

T(n,k) = A175836(n)/(A175836(k)*A175836(n-k)).
T(n,k) = prod_{i=1..n} A001615(i)/(prod_{i=1..k} A001615(i)*prod_{i=1..n-k} A001615(i)).
T(n,k) = A001615(n)/n*(k/A001615(k)*T(n-1,k-1)+(n-k)/A001615(n-k)*T(n-1,k)).
T(n,k) = A238688(n,k)/A238453(n,k).

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A173290 Partial sums of A001615.

Original entry on oeis.org

1, 4, 8, 14, 20, 32, 40, 52, 64, 82, 94, 118, 132, 156, 180, 204, 222, 258, 278, 314, 346, 382, 406, 454, 484, 526, 562, 610, 640, 712, 744, 792, 840, 894, 942, 1014, 1052, 1112, 1168, 1240, 1282, 1378, 1422, 1494, 1566, 1638, 1686, 1782, 1838, 1928, 2000, 2084
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2010

Keywords

Comments

a(n) is even for n >= 2. - Jianing Song, Nov 24 2018

References

  • W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88; http://scientificadvances.co.in; DOI: http://dx.doi.org/10.18642/jantaa_7100121599

Crossrefs

Cf. A082020.
Cf. A175836 (partial products of the Dedekind psi function).

Programs

  • Magma
    [(&+[MoebiusMu(k)^2*Floor(n/k)*Floor(1 + n/k): k in [1..n]])/2: n in [1..60]]; // G. C. Greubel, Nov 23 2018
  • Maple
    with(numtheory): a:=n->(1/2)*add(mobius(k)^2*floor(n/k)*floor(1+n/k),k=1..n); seq(a(n),n=1..55); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k], {k,1,n}], {n,60}] (* G. C. Greubel, Nov 23 2018 *)
    psi[n_] := If[n==1, 1, n*Times@@(1 + 1/FactorInteger[n][[;;,1]])]; Accumulate[Array[psi, 50]] (* Amiram Eldar, Nov 23 2018 *)
  • PARI
    S(n) = sum(k=1, sqrtint(n), moebius(k)*(n\(k*k))); \\ see: A013928
    a(n) = sum(k=1, sqrtint(n), k*(k+1) * (S(n\k) - S(n\(k+1))))/2 + sum(k=1, n\(1+sqrtint(n)), moebius(k)^2*(n\k)*(1+n\k))/2; \\ Daniel Suteu, Nov 23 2018
    
  • Sage
    def A173290(n) :
        return add(k*mul(1+1/p for p in prime_divisors(k)) for k in (1..n))
    [A173290(n) for n in (1..52)]  # Peter Luschny, Jun 10 2012
    

Formula

a(n) = Sum_{i=1..n} A001615(i) = Sum_{i=1..n} (n * Product_{p|n, p prime} (1 + 1/p)).
a(n) = 15*n^2/(2*Pi^2) + O(n*log(n)). - Enrique Pérez Herrero, Jan 14 2012
a(n) = Sum_{i=1..n} A063659(i) * floor(n/i). - Enrique Pérez Herrero, Feb 23 2013
a(n) = (1/2)*Sum_{k=1..n} mu(k)^2 * floor(n/k) * floor(1+n/k), where mu(k) is the Moebius function. - Daniel Suteu, Nov 19 2018
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (A013928(1+floor(n/k)) - A013928(1+floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k)^2 * floor(n/k) * floor(1+n/k))/2. - Daniel Suteu, Nov 23 2018

A059381 Product J_2(i), i=1..n.

Original entry on oeis.org

1, 3, 24, 288, 6912, 165888, 7962624, 382205952, 27518828544, 1981355655168, 237762678620160, 22825217147535360, 3834636480785940480, 552187653233175429120, 106020029420769682391040, 20355845648787779019079680, 5862483546850880357494947840
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^2 for 1 <= i,j <= n. - Avi Peretz, (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Maple
    f:= n-> LinearAlgebra:-Determinant(Matrix(n,n,(i,j) -> igcd(i,j)^2)):
    map(f, [$1..40]); # Robert Israel, Dec 01 2017
  • Mathematica
    JordanTotient[n_,k_:1] := DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n]; A059381[n_]:=Times@@(JordanTotient[#,2]&/@Range[n] ); (* Enrique Pérez Herrero, Dec 29 2010 *)

Formula

a(n) = A001088(n)*A175836(n). - Enrique Pérez Herrero, Oct 08 2011

A059382 Product J_3(i), i=1..n.

Original entry on oeis.org

1, 7, 182, 10192, 1263808, 230013056, 78664465152, 35241680388096, 24739659632443392, 21474024560960864256, 28560452666077949460480, 41584019081809494414458880, 91318505903653649734151700480, 218616503133346837463559170949120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^3 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059382[n_]:=Times@@(JordanTotient[#, 3]&/@Range[n]); (* Enrique Pérez Herrero, Aug 06 2011 *)

A059383 Product J_4(i), i=1..n.

Original entry on oeis.org

1, 15, 1200, 288000, 179712000, 215654400000, 517570560000000, 1987470950400000000, 12878811758592000000000, 120545678060421120000000000, 1764788726804565196800000000000, 33883943554647651778560000000000000, 967725427920736934795673600000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^4 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059383[n_]:=Times@@(JordanTotient[#, 4]&/@Range[n]); (* Enrique Pérez Herrero, Aug 12 2011 *)

A059384 a(n) = Product_{i=1..n} J_5(i).

Original entry on oeis.org

1, 31, 7502, 7441984, 23248758016, 174412182636032, 2931171141381153792, 93047096712003345973248, 5471727569246068763302821888, 529903984716066283313298482921472, 85341036738522474927606720674503065600, 20487310643596659421020979792003903940198400
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^5 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_Integer, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &];  f[n_] := Times @@ (JordanTotient[#, 5] & /@ Range[n]); (* Enrique Pérez Herrero *)  Array[f, 11] (* Robert G. Wilson v, Oct 08 2011 *)

A203444 Numbers in range of Dedekind Psi function: A001615.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 36, 38, 42, 44, 48, 54, 56, 60, 62, 68, 72, 74, 80, 84, 90, 96, 98, 102, 104, 108, 110, 112, 114, 120, 126, 128, 132, 138, 140, 144, 150, 152, 158, 160, 162, 164, 168, 174, 176, 180, 182, 186, 192, 194, 198, 200
Offset: 1

Views

Author

Enrique Pérez Herrero, Jan 02 2012

Keywords

Comments

a(n) is even for n>2

Crossrefs

Programs

  • Mathematica
    terms = 100; Clear[seq]; seq[k_] := seq[k] = Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 1, k terms}] // Union // PadRight[#, terms]&;
    seq[k = 1]; seq[k++]; While[Print[k]; seq[k] != seq[k-1], k++];
    seq[k] (* Jean-François Alcover, Dec 14 2018, after Jan Mangaldan in A001615 *)

A239672 Product_{i=1..n} J_6(i) where J_6(i) = A069091(i).

Original entry on oeis.org

1, 63, 45864, 184923648, 2889247076352, 132512427909808128, 15589822118733106642944, 4022922418094840702998413312, 2135013202351949099169693925638144, 2101519115233451721701919767332732796928, 3722967203782973732098252983015976113725767680
Offset: 1

Views

Author

Tom Edgar, Mar 23 2014

Keywords

Comments

This is the generalized factorial for A069091.
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^6 for 1 <= i,j <= n.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Sage
    q=15 # change q for more terms
    J6=[i^6*prod([1-1/p^6 for p in prime_divisors(i)]) for i in [1..q]]
    [prod(J6[0:i+1]) for i in [0..q-1]]
Showing 1-9 of 9 results.