A238688 Triangle read by rows: T(n,k) = A059381(n)/(A059381(k)*A059381(n-k)).
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 12, 32, 12, 1, 1, 24, 96, 96, 24, 1, 1, 24, 192, 288, 192, 24, 1, 1, 48, 384, 1152, 1152, 384, 48, 1, 1, 48, 768, 2304, 4608, 2304, 768, 48, 1, 1, 72, 1152, 6912, 13824, 13824, 6912, 1152, 72, 1, 1, 72, 1728, 10368, 41472, 41472
Offset: 0
Examples
The first five terms in the second Jordan totient function are 1,3,8,12,24 and so T(4,2) = 12*8*3*1/((3*1)*(3*1))=32 and T(5,3) = 24*12*8*3*1/((8*3*1)*(3*1))=96. The triangle begins 1 1 1 1 3 1 1 8 8 1 1 12 32 12 1 1 24 96 96 24 1 1 24 192 288 192 24 1
Links
- Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
Programs
-
Sage
q=100 #change q for more rows P=[0]+[i^2*prod([1-1/p^2 for p in prime_divisors(i)]) for i in [1..q]] [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
Comments