A238754 Triangle read by rows: T(n,k) = A059383(n)/(A059383(k)*A059383(n-k)).
1, 1, 1, 1, 15, 1, 1, 80, 80, 1, 1, 240, 1280, 240, 1, 1, 624, 9984, 9984, 624, 1, 1, 1200, 49920, 149760, 49920, 1200, 1, 1, 2400, 192000, 1497600, 1497600, 192000, 2400, 1, 1, 3840, 614400, 9216000, 23961600, 9216000, 614400, 3840, 1, 1, 6480, 1658880
Offset: 0
Examples
The first five terms in the fourth Jordan totient function are 1,15,80,240,624 and so T(4,2) = 240*80*15*1/((15*1)*(15*1))=1280 and T(5,3) = 624*240*80*15*1/((80*15*1)*(15*1))=9984. The triangle begins 1 1 1 1 15 1 1 80 80 1 1 240 1280 240 1 1 624 9984 9984 624 1
Links
- Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
Programs
-
Sage
q=100 #change q for more rows P=[0]+[i^4*prod([1-1/p^4 for p in prime_divisors(i)]) for i in [1..q]] [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
Comments