cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A239633 Triangle read by rows: T(n,k) = A059384(n)/(A059384(k)*A059384(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 31, 1, 1, 242, 242, 1, 1, 992, 7744, 992, 1, 1, 3124, 99968, 99968, 3124, 1, 1, 7502, 756008, 3099008, 756008, 7502, 1, 1, 16806, 4067052, 52501944, 52501944, 4067052, 16806, 1, 1, 31744, 17209344, 533489664, 1680062208, 533489664, 17209344, 31744
Offset: 0

Views

Author

Tom Edgar, Mar 22 2014

Keywords

Comments

We assume that A059384(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_5 given in A059378.
Another name might be the 5-totienomial coefficients.

Examples

			The first five terms in the fifth Jordan totient function are 1,31,242,992,3124 and so T(4,2) = 992*242*31*1/((31*1)*(31*1))=7744 and T(5,3) = 3124*992*242*31*1/((242*31*1)*(31*1))=99968.
The triangle begins
1
1 1
1 31   1
1 242  242   1
1 992  7744  992   1
1 3124 99968 99968 3124 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^5*prod([1-1/p^5 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059384(n)/(A059384(k)* A059384(n-k)).
T(n,k) = prod_{i=1..n} A059378(i)/(prod_{i=1..k} A059378(i)*prod_{i=1..n-k} A059378(i)).
T(n,k) = A059378(n)/n*(k/A059378(k)*T(n-1,k-1)+(n-k)/A059378(n-k)*T(n-1,k)).

A001088 Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).

Original entry on oeis.org

1, 1, 1, 2, 4, 16, 32, 192, 768, 4608, 18432, 184320, 737280, 8847360, 53084160, 424673280, 3397386240, 54358179840, 326149079040, 5870683422720, 46965467381760, 563585608581120, 5635856085811200, 123988833887846400, 991910671102771200, 19838213422055424000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j) for 1 <= i,j <= n [Smith and Mansion]. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001
The matrix M(i,j) = gcd(i,j) is sequence A003989. - Michael Somos, Jun 25 2012

Examples

			a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.
  • M. Petkovsek et al., A=B, Peters, 1996, p. 21.

Crossrefs

Programs

Formula

a(n) = phi(1) * phi(2) * ... * phi(n).
Limit_{n->infinity} a(n)^(1/n) / n = exp(-1) * A124175 = 0.205963050288186353879675428232497466485878059342058515016427881513657493... (see Mathoverflow link). - Vaclav Kotesovec, Jun 09 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 19 2023

A175836 a(n) = Product_{i=1..n} psi(i) where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 72, 432, 5184, 41472, 497664, 5971968, 107495424, 1289945088, 30958682112, 433421549568, 10402117189632, 249650812551168, 5991619501228032, 107849151022104576, 3882569436795764736
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 18 2010

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A060648(gcd(i,j)) for 1 <= i,j <= n, note that A060648 is the Inverse Möbius transform of A001615. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Haskell
    a175836 n = a175836_list !! (n-1)
    a175836_list = scanl1 (*) a001615_list
    -- Reinhard Zumkeller, Mar 01 2014
  • Maple
    A175836 := proc(n) option remember; local p; `if`(n<2,1, n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end: # Peter Luschny, Feb 28 2014
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n];
    DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n];
    A175836[n_]:=Times@@DedekindPsi/@Range[n]
  • PARI
    a=direuler(p=2, 100, (1+X)/(1-p*X));for(i=2,#a,a[i]*=a[i-1]);a
    \\ Charles R Greathouse IV, Jul 29 2011
    

Formula

a(n) = A059381(n)/A001088(n).

A059382 Product J_3(i), i=1..n.

Original entry on oeis.org

1, 7, 182, 10192, 1263808, 230013056, 78664465152, 35241680388096, 24739659632443392, 21474024560960864256, 28560452666077949460480, 41584019081809494414458880, 91318505903653649734151700480, 218616503133346837463559170949120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^3 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059382[n_]:=Times@@(JordanTotient[#, 3]&/@Range[n]); (* Enrique Pérez Herrero, Aug 06 2011 *)

A059383 Product J_4(i), i=1..n.

Original entry on oeis.org

1, 15, 1200, 288000, 179712000, 215654400000, 517570560000000, 1987470950400000000, 12878811758592000000000, 120545678060421120000000000, 1764788726804565196800000000000, 33883943554647651778560000000000000, 967725427920736934795673600000000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^4 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.

Crossrefs

Programs

  • Mathematica
    JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A059383[n_]:=Times@@(JordanTotient[#, 4]&/@Range[n]); (* Enrique Pérez Herrero, Aug 12 2011 *)
Showing 1-5 of 5 results.