A239633 Triangle read by rows: T(n,k) = A059384(n)/(A059384(k)*A059384(n-k)).
1, 1, 1, 1, 31, 1, 1, 242, 242, 1, 1, 992, 7744, 992, 1, 1, 3124, 99968, 99968, 3124, 1, 1, 7502, 756008, 3099008, 756008, 7502, 1, 1, 16806, 4067052, 52501944, 52501944, 4067052, 16806, 1, 1, 31744, 17209344, 533489664, 1680062208, 533489664, 17209344, 31744
Offset: 0
Examples
The first five terms in the fifth Jordan totient function are 1,31,242,992,3124 and so T(4,2) = 992*242*31*1/((31*1)*(31*1))=7744 and T(5,3) = 3124*992*242*31*1/((242*31*1)*(31*1))=99968. The triangle begins 1 1 1 1 31 1 1 242 242 1 1 992 7744 992 1 1 3124 99968 99968 3124 1
Links
- Tom Edgar, Totienomial Coefficients, INTEGERS, 14 (2014), #A62.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- Donald E. Knuth and Herbert S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., 396:212-219, 1989.
Programs
-
Sage
q=100 #change q for more rows P=[0]+[i^5*prod([1-1/p^5 for p in prime_divisors(i)]) for i in [1..q]] [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
Comments