cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255915 Triangle read by rows: T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 63, 1, 1, 728, 728, 1, 1, 4032, 46592, 4032, 1, 1, 15624, 999936, 999936, 15624, 1, 1, 45864, 11374272, 62995968, 11374272, 45864, 1, 1, 117648, 85647744, 1838132352, 1838132352, 85647744, 117648, 1, 1, 258048, 481886208, 30358831104, 117640470528
Offset: 0

Views

Author

Tom Edgar, Mar 10 2015

Keywords

Comments

These are the generalized binomial coefficients associated with the Jordan totient function J_6 given in A069091.
Another name might be the 6-totienomial coefficients.

Examples

			The first five terms in the sixth Jordan totient function are 1, 63, 728, 4032, 15624 and so T(4,2) = 4032*728*63*1/((63*1)*(63*1)) = 46592 and T(5,3) = 15624*4032*728*63*1/((728*63*1)*(63*1)) = 999936.
The triangle begins:
1;
1, 1;
1, 63, 1;
1, 728, 728, 1;
1, 4032, 46592, 4032, 1;
1, 15624, 999936, 999936, 15624, 1;
1, 45864, 11374272, 62995968, 11374272, 45864, 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^6*prod([1-1/p^6 for p in prime_divisors(i)]) for i in [1..q]]
    Triangle=[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).
T(n,k) = Product_{i=1..n} A069091(i)/(Product_{i=1..k} A069091(i)*Product_{i=1..n-k} A069091(i)).
T(n,k) = A069091(n)/n*(k/A069091(k)*T(n-1,k-1)+(n-k)/A069091(n-k)*T(n-1,k)).

A175836 a(n) = Product_{i=1..n} psi(i) where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 72, 432, 5184, 41472, 497664, 5971968, 107495424, 1289945088, 30958682112, 433421549568, 10402117189632, 249650812551168, 5991619501228032, 107849151022104576, 3882569436795764736
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 18 2010

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A060648(gcd(i,j)) for 1 <= i,j <= n, note that A060648 is the Inverse Möbius transform of A001615. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Haskell
    a175836 n = a175836_list !! (n-1)
    a175836_list = scanl1 (*) a001615_list
    -- Reinhard Zumkeller, Mar 01 2014
  • Maple
    A175836 := proc(n) option remember; local p; `if`(n<2,1, n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end: # Peter Luschny, Feb 28 2014
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n];
    DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n];
    A175836[n_]:=Times@@DedekindPsi/@Range[n]
  • PARI
    a=direuler(p=2, 100, (1+X)/(1-p*X));for(i=2,#a,a[i]*=a[i-1]);a
    \\ Charles R Greathouse IV, Jul 29 2011
    

Formula

a(n) = A059381(n)/A001088(n).
Showing 1-2 of 2 results.