cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A238498 Triangle read by rows: T(n,k) = A175836(n)/(A175836(k)* A175836(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 8, 6, 1, 1, 6, 12, 12, 6, 1, 1, 12, 24, 36, 24, 12, 1, 1, 8, 32, 48, 48, 32, 8, 1, 1, 12, 32, 96, 96, 96, 32, 12, 1, 1, 12, 48, 96, 192, 192, 96, 48, 12, 1, 1, 18, 72, 216, 288, 576, 288, 216, 72, 18, 1, 1, 12, 72, 216, 432, 576, 576, 432, 216, 72, 12, 1
Offset: 0

Views

Author

Tom Edgar, Feb 27 2014

Keywords

Comments

We assume that A175836(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Dedekind psi function A001615.
Another name might be the psi-nomial coefficients.

Examples

			The first five terms in the Dedekind psi function are 1,3,4,6,6 and so T(4,2) = 6*4*3*1/((3*1)*(3*1))=8 and T(5,3) = 6*6*4*3*1/((4*3*1)*(3*1))=12.
The triangle begins
1
1  1
1  3  1
1  4  4  1
1  6  8  6  1
1  6  12 12 6 1
		

Crossrefs

Programs

  • Haskell
    a238498 n k = a238498_tabl !! n !! k
    a238498_row n = a238498_tabl !! n
    a238498_tabl = [1] : f [1] a001615_list where
       f xs (z:zs) = (map (div y) $ zipWith (*) ys $ reverse ys) : f ys zs
         where ys = y : xs; y = head xs * z
    -- Reinhard Zumkeller, Mar 01 2014
  • Maple
    A175836 := proc(n) option remember; local p;
    `if`(n<2,1,n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end:
    A238498 := (n,k) -> A175836(n)/(A175836(k)*A175836(n-k)):
    seq(seq(A238498(n,k),k=0..n),n=0..10); # Peter Luschny, Feb 28 2014
  • Mathematica
    DedekindPsi[n_] := Sum[MoebiusMu[n/d] d^2 , {d, Divisors[n]}]/EulerPhi[n];
    (* b = A175836 *) b[n_] := Times @@ DedekindPsi /@ Range[n];
    T[n_, k_] := b[n]/(b[k] b[n-k]);
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jul 02 2019 *)
  • Sage
    q=100 #change q for more rows
    P=[0]+[i*prod([(1+1/x) for x in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
    

Formula

T(n,k) = A175836(n)/(A175836(k)*A175836(n-k)).
T(n,k) = prod_{i=1..n} A001615(i)/(prod_{i=1..k} A001615(i)*prod_{i=1..n-k} A001615(i)).
T(n,k) = A001615(n)/n*(k/A001615(k)*T(n-1,k-1)+(n-k)/A001615(n-k)*T(n-1,k)).
T(n,k) = A238688(n,k)/A238453(n,k).

A238743 Triangle read by rows: T(n,k) = A059382(n)/(A059382(k)*A059382(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 26, 26, 1, 1, 56, 208, 56, 1, 1, 124, 992, 992, 124, 1, 1, 182, 3224, 6944, 3224, 182, 1, 1, 342, 8892, 42408, 42408, 8892, 342, 1, 1, 448, 21888, 153216, 339264, 153216, 21888, 448, 1, 1, 702, 44928, 590976, 1920672, 1920672, 590976, 44928
Offset: 0

Views

Author

Tom Edgar, Mar 04 2014

Keywords

Comments

We assume that A059382(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_3 given in A059376.
Another name might be the 3-totienomial coefficients.

Examples

			The first five terms in the third Jordan totient function are 1,7,26,56,124 and so T(4,2) = 56*26*7*1/((7*1)*(7*1))=208 and T(5,3) = 124*56*26*7*1/((26*7*1)*(7*1))=992.
The triangle begins
1
1 1
1 7   1
1 26  26   1
1 56  208  56   1
1 124 992  992  124  1
1 182 3224 6944 3224 182 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^3*prod([1-1/p^3 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059382(n)/(A059382(k)* A059382(n-k)).
T(n,k) = prod_{i=1..n} A059376(i)/(prod_{i=1..k} A059376(i)*prod_{i=1..n-k} A059376(i)).
T(n,k) = A059376(n)/n*(k/A059376(k)*T(n-1,k-1)+(n-k)/A059376(n-k)*T(n-1,k)).

A238754 Triangle read by rows: T(n,k) = A059383(n)/(A059383(k)*A059383(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 15, 1, 1, 80, 80, 1, 1, 240, 1280, 240, 1, 1, 624, 9984, 9984, 624, 1, 1, 1200, 49920, 149760, 49920, 1200, 1, 1, 2400, 192000, 1497600, 1497600, 192000, 2400, 1, 1, 3840, 614400, 9216000, 23961600, 9216000, 614400, 3840, 1, 1, 6480, 1658880
Offset: 0

Views

Author

Tom Edgar, Mar 04 2014

Keywords

Comments

We assume that A059383(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_4 given in A059377.
Another name might be the 4-totienomial coefficients.

Examples

			The first five terms in the fourth Jordan totient function are 1,15,80,240,624 and so T(4,2) = 240*80*15*1/((15*1)*(15*1))=1280 and T(5,3) = 624*240*80*15*1/((80*15*1)*(15*1))=9984.
The triangle begins
1
1 1
1 15  1
1 80  80   1
1 240 1280 240  1
1 624 9984 9984 624 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^4*prod([1-1/p^4 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059383(n)/(A059383(k)* A059383(n-k)).
T(n,k) = prod_{i=1..n} A059377(i)/(prod_{i=1..k} A059377(i)*prod_{i=1..n-k} A059377(i)).
T(n,k) = A059377(n)/n*(k/A059377(k)*T(n-1,k-1)+(n-k)/A059377(n-k)*T(n-1,k)).

A239633 Triangle read by rows: T(n,k) = A059384(n)/(A059384(k)*A059384(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 31, 1, 1, 242, 242, 1, 1, 992, 7744, 992, 1, 1, 3124, 99968, 99968, 3124, 1, 1, 7502, 756008, 3099008, 756008, 7502, 1, 1, 16806, 4067052, 52501944, 52501944, 4067052, 16806, 1, 1, 31744, 17209344, 533489664, 1680062208, 533489664, 17209344, 31744
Offset: 0

Views

Author

Tom Edgar, Mar 22 2014

Keywords

Comments

We assume that A059384(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with the Jordan totient function J_5 given in A059378.
Another name might be the 5-totienomial coefficients.

Examples

			The first five terms in the fifth Jordan totient function are 1,31,242,992,3124 and so T(4,2) = 992*242*31*1/((31*1)*(31*1))=7744 and T(5,3) = 3124*992*242*31*1/((242*31*1)*(31*1))=99968.
The triangle begins
1
1 1
1 31   1
1 242  242   1
1 992  7744  992   1
1 3124 99968 99968 3124 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^5*prod([1-1/p^5 for p in prime_divisors(i)]) for i in [1..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A059384(n)/(A059384(k)* A059384(n-k)).
T(n,k) = prod_{i=1..n} A059378(i)/(prod_{i=1..k} A059378(i)*prod_{i=1..n-k} A059378(i)).
T(n,k) = A059378(n)/n*(k/A059378(k)*T(n-1,k-1)+(n-k)/A059378(n-k)*T(n-1,k)).

A255915 Triangle read by rows: T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 63, 1, 1, 728, 728, 1, 1, 4032, 46592, 4032, 1, 1, 15624, 999936, 999936, 15624, 1, 1, 45864, 11374272, 62995968, 11374272, 45864, 1, 1, 117648, 85647744, 1838132352, 1838132352, 85647744, 117648, 1, 1, 258048, 481886208, 30358831104, 117640470528
Offset: 0

Views

Author

Tom Edgar, Mar 10 2015

Keywords

Comments

These are the generalized binomial coefficients associated with the Jordan totient function J_6 given in A069091.
Another name might be the 6-totienomial coefficients.

Examples

			The first five terms in the sixth Jordan totient function are 1, 63, 728, 4032, 15624 and so T(4,2) = 4032*728*63*1/((63*1)*(63*1)) = 46592 and T(5,3) = 15624*4032*728*63*1/((728*63*1)*(63*1)) = 999936.
The triangle begins:
1;
1, 1;
1, 63, 1;
1, 728, 728, 1;
1, 4032, 46592, 4032, 1;
1, 15624, 999936, 999936, 15624, 1;
1, 45864, 11374272, 62995968, 11374272, 45864, 1
		

Crossrefs

Programs

  • Sage
    q=100 #change q for more rows
    P=[0]+[i^6*prod([1-1/p^6 for p in prime_divisors(i)]) for i in [1..q]]
    Triangle=[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.

Formula

T(n,k) = A239672(n)/(A239672(k) * A239672(n-k)).
T(n,k) = Product_{i=1..n} A069091(i)/(Product_{i=1..k} A069091(i)*Product_{i=1..n-k} A069091(i)).
T(n,k) = A069091(n)/n*(k/A069091(k)*T(n-1,k-1)+(n-k)/A069091(n-k)*T(n-1,k)).
Showing 1-5 of 5 results.