cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 323 results. Next

A307868 Decimal expansion of the asymptotic mean of phi(k)/psi(k), where phi(k) is Euler totient function (A000010) and psi(k) is Dedekind psi function (A001615).

Original entry on oeis.org

4, 7, 1, 6, 8, 0, 6, 1, 3, 6, 1, 2, 9, 9, 7, 8, 6, 8, 0, 7, 5, 2, 3, 5, 6, 3, 3, 0, 8, 0, 4, 8, 2, 0, 8, 7, 4, 2, 5, 9, 2, 6, 3, 8, 2, 0, 0, 6, 9, 8, 6, 8, 8, 3, 6, 3, 5, 7, 3, 7, 2, 5, 5, 4, 1, 7, 7, 3, 2, 1, 1, 6, 7, 5, 9, 6, 8, 2, 7, 4, 4, 0, 9, 6, 2, 1, 0, 0, 2, 7, 3, 7, 6, 9, 4, 9, 0, 2, 3, 0, 3, 1, 3, 0, 1, 1
Offset: 0

Views

Author

Amiram Eldar, May 02 2019

Keywords

Comments

Also, the asymptotic mean of A162511. - Amiram Eldar, Sep 18 2022

Examples

			0.47168061361299786807523563308048208742592638200698...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-2, 1, 2}, {0, -4, 6}, m]; RealDigits[(2/3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 - 2/(p*(p+1))) \\ Vaclav Kotesovec, Sep 19 2020

Formula

Equals lim_{m->oo} (1/m)*Sum_{k=1..m} phi(k)/psi(k).
Equals Product_{p prime} (1 - 2/(p * (p+1))).
Equals A065472 / zeta(2). - Amiram Eldar, Sep 18 2022

Extensions

More digits from Vaclav Kotesovec, Sep 19 2020

A344695 a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers (A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.

Crossrefs

Cf. A000203, A001615, A005117, A244963, A344696, A344697, A344702, A344703 (numbers k for which a(k^2) > 1).
Subsets of range: A008864, A065091 (conjectured).

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1,n],DivisorSum[n,MoebiusMu[n/#]^2*#&]],{n,100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    (Python 3.8+)
    from math import prod, gcd
    from sympy import primefactors, divisor_sigma
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist)
    def A344695(n): return gcd(A001615(n),divisor_sigma(n)) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = gcd(A000203(n), A001615(n)).
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
a(A007913(n)) | a(n).
a(n) = gcd(A000203(n), A244963(n)) = gcd(A001615(n), A244963(n)).
a(n) = A000203(n) / A344696(n).
a(n) = A001615(n) / A344697(n).

A323363 Dirichlet inverse of Dedekind's psi, A001615.

Original entry on oeis.org

1, -3, -4, 3, -6, 12, -8, -3, 4, 18, -12, -12, -14, 24, 24, 3, -18, -12, -20, -18, 32, 36, -24, 12, 6, 42, -4, -24, -30, -72, -32, -3, 48, 54, 48, 12, -38, 60, 56, 18, -42, -96, -44, -36, -24, 72, -48, -12, 8, -18, 72, -42, -54, 12, 72, 24, 80, 90, -60, 72, -62, 96, -32, 3, 84, -144, -68, -54, 96, -144, -72, -12, -74, 114, -24
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Crossrefs

Cf. A048250 (absolute values).

Programs

  • Mathematica
    psi[n_] := If[n == 1, 1, n Times @@ (1 + 1/FactorInteger[n][[All, 1]])];
    a[n_] := a[n] = If[n == 1, 1, -Sum[psi[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 75] (* Jean-François Alcover, Feb 15 2020 *)
    f[p_, e_] := (-1)^e * (p + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    A323363(n) = if(1==n,1,-sumdiv(n,d,if(dA001615(n/d)*A323363(d),0)));

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} psi(k) * A(x^k). - Ilya Gutkovskiy, Sep 04 2019
From Amiram Eldar, Oct 14 2020: (Start)
Multiplicative with a(p^e) = (-1)^e * (p+1).
a(n) = A008836(n) * A048250(n). (End)
Dirichlet g.f.: zeta(2*s)/(zeta(s-1)*zeta(s)). - Amiram Eldar, Dec 05 2022

A347385 Dedekind psi function applied to the odd part of n: a(n) = A001615(A000265(n)).

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 12, 6, 12, 4, 14, 8, 24, 1, 18, 12, 20, 6, 32, 12, 24, 4, 30, 14, 36, 8, 30, 24, 32, 1, 48, 18, 48, 12, 38, 20, 56, 6, 42, 32, 44, 12, 72, 24, 48, 4, 56, 30, 72, 14, 54, 36, 72, 8, 80, 30, 60, 24, 62, 32, 96, 1, 84, 48, 68, 18, 96, 48, 72, 12, 74, 38, 120, 20, 96, 56, 80, 6, 108, 42, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Comments

Coincides with A000593 on A122132.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p + 1)*p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    A347385(n) = if(1==n,n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));

Formula

Multiplicative with a(2^e) = 1, a(p^e) = (p+1)*p^(e-1) for all odd primes p.
a(n) = A001615(A000265(n)).
a(n) = A206787(n) * A336651(n). - Antti Karttunen, Feb 11 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4/Pi^2 = 0.405284... (A185199). - Amiram Eldar, Nov 19 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s))*(4^s-2^(s+1))/(4^s-1). - Amiram Eldar, Jan 04 2023

A357817 Partial alternating sums of the Dedekind psi function (A001615): a(n) = Sum_{k=1..n} (-1)^(k+1) * psi(k).

Original entry on oeis.org

1, -2, 2, -4, 2, -10, -2, -14, -2, -20, -8, -32, -18, -42, -18, -42, -24, -60, -40, -76, -44, -80, -56, -104, -74, -116, -80, -128, -98, -170, -138, -186, -138, -192, -144, -216, -178, -238, -182, -254, -212, -308, -264, -336, -264, -336, -288, -384, -328, -418
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Accumulate[Array[(-1)^(# + 1)*psi[#] &, 50]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = sum(k=1, n, (-1)^(k+1) * f(k)); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = -(3/(2*Pi^3)) * n^2 + O(n * log(n)^(2/3)) (Tóth, 2017).

A173290 Partial sums of A001615.

Original entry on oeis.org

1, 4, 8, 14, 20, 32, 40, 52, 64, 82, 94, 118, 132, 156, 180, 204, 222, 258, 278, 314, 346, 382, 406, 454, 484, 526, 562, 610, 640, 712, 744, 792, 840, 894, 942, 1014, 1052, 1112, 1168, 1240, 1282, 1378, 1422, 1494, 1566, 1638, 1686, 1782, 1838, 1928, 2000, 2084
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2010

Keywords

Comments

a(n) is even for n >= 2. - Jianing Song, Nov 24 2018

References

  • W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88; http://scientificadvances.co.in; DOI: http://dx.doi.org/10.18642/jantaa_7100121599

Crossrefs

Cf. A082020.
Cf. A175836 (partial products of the Dedekind psi function).

Programs

  • Magma
    [(&+[MoebiusMu(k)^2*Floor(n/k)*Floor(1 + n/k): k in [1..n]])/2: n in [1..60]]; // G. C. Greubel, Nov 23 2018
  • Maple
    with(numtheory): a:=n->(1/2)*add(mobius(k)^2*floor(n/k)*floor(1+n/k),k=1..n); seq(a(n),n=1..55); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k], {k,1,n}], {n,60}] (* G. C. Greubel, Nov 23 2018 *)
    psi[n_] := If[n==1, 1, n*Times@@(1 + 1/FactorInteger[n][[;;,1]])]; Accumulate[Array[psi, 50]] (* Amiram Eldar, Nov 23 2018 *)
  • PARI
    S(n) = sum(k=1, sqrtint(n), moebius(k)*(n\(k*k))); \\ see: A013928
    a(n) = sum(k=1, sqrtint(n), k*(k+1) * (S(n\k) - S(n\(k+1))))/2 + sum(k=1, n\(1+sqrtint(n)), moebius(k)^2*(n\k)*(1+n\k))/2; \\ Daniel Suteu, Nov 23 2018
    
  • Sage
    def A173290(n) :
        return add(k*mul(1+1/p for p in prime_divisors(k)) for k in (1..n))
    [A173290(n) for n in (1..52)]  # Peter Luschny, Jun 10 2012
    

Formula

a(n) = Sum_{i=1..n} A001615(i) = Sum_{i=1..n} (n * Product_{p|n, p prime} (1 + 1/p)).
a(n) = 15*n^2/(2*Pi^2) + O(n*log(n)). - Enrique Pérez Herrero, Jan 14 2012
a(n) = Sum_{i=1..n} A063659(i) * floor(n/i). - Enrique Pérez Herrero, Feb 23 2013
a(n) = (1/2)*Sum_{k=1..n} mu(k)^2 * floor(n/k) * floor(1+n/k), where mu(k) is the Moebius function. - Daniel Suteu, Nov 19 2018
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (A013928(1+floor(n/k)) - A013928(1+floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k)^2 * floor(n/k) * floor(1+n/k))/2. - Daniel Suteu, Nov 23 2018

A175836 a(n) = Product_{i=1..n} psi(i) where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 72, 432, 5184, 41472, 497664, 5971968, 107495424, 1289945088, 30958682112, 433421549568, 10402117189632, 249650812551168, 5991619501228032, 107849151022104576, 3882569436795764736
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 18 2010

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A060648(gcd(i,j)) for 1 <= i,j <= n, note that A060648 is the Inverse Möbius transform of A001615. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Haskell
    a175836 n = a175836_list !! (n-1)
    a175836_list = scanl1 (*) a001615_list
    -- Reinhard Zumkeller, Mar 01 2014
  • Maple
    A175836 := proc(n) option remember; local p; `if`(n<2,1, n*mul(1+1/p,p=factorset(n))*A175836(n-1)) end: # Peter Luschny, Feb 28 2014
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n];
    DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n];
    A175836[n_]:=Times@@DedekindPsi/@Range[n]
  • PARI
    a=direuler(p=2, 100, (1+X)/(1-p*X));for(i=2,#a,a[i]*=a[i-1]);a
    \\ Charles R Greathouse IV, Jul 29 2011
    

Formula

a(n) = A059381(n)/A001088(n).

A306927 a(n) = A001615(n) - n.

Original entry on oeis.org

0, 1, 1, 2, 1, 6, 1, 4, 3, 8, 1, 12, 1, 10, 9, 8, 1, 18, 1, 16, 11, 14, 1, 24, 5, 16, 9, 20, 1, 42, 1, 16, 15, 20, 13, 36, 1, 22, 17, 32, 1, 54, 1, 28, 27, 26, 1, 48, 7, 40, 21, 32, 1, 54, 17, 40, 23, 32, 1, 84, 1, 34, 33, 32, 19, 78, 1, 40, 27, 74, 1, 72
Offset: 1

Views

Author

Torlach Rush, Mar 16 2019

Keywords

Comments

Analogous to A051953.
a(n) = A051953(n) if n is an element of A000961.
a(n) > A051953(n) if n is an element of A024619.
The sum of the proper divisors d of n such that n/d is squarefree. - Amiram Eldar, Sep 06 2019

Examples

			0 is a term because A001615(1) - 1 = 0.
1 is a term because A001615(2) - 2 = 1.
3 is a term because A001615(9) - 9 = 3.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := n * (Times @@ (1 + 1/FactorInteger[n][[;; , 1]]) - 1); Array[a, 100] (* Amiram Eldar, Sep 06 2019 *)
  • PARI
    a(n) = n*(sumdivmult(n, d, issquarefree(d)/d) - 1); \\ Michel Marcus, Mar 18 2019

Formula

a(n) = A001615(n) - n.
a(n) = Sum_{d|n, dAmiram Eldar, Sep 06 2019
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = 15/Pi^2 - 1 = 0.519817... . - Amiram Eldar, Dec 08 2023

A344696 a(n) = sigma(n) / gcd(sigma(n), A001615(n)).

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 10, 7, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 10, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 21, 1, 57, 13
Offset: 1

Views

Author

Antti Karttunen, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 35, although a(4) = 7 and a(27) = 10. See A344702.

Crossrefs

Cf. A000203, A001615, A005117 (positions of ones), A344695, A344697, A344698, A344702.
Cf. also A344756.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344696(n) = { my(u=sigma(n)); (u/gcd(u,A001615(n))); };

Formula

a(n) = A000203(n) / A344695(n).

A344697 a(n) = A001615(n) / gcd(sigma(n), A001615(n)).

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 1, 4, 12, 1, 1, 6, 1, 1, 1, 24, 1, 12, 1, 6, 1, 1, 1, 4, 30, 1, 9, 6, 1, 1, 1, 16, 1, 1, 1, 72, 1, 1, 1, 4, 1, 1, 1, 6, 12, 1, 1, 24, 56, 30, 1, 6, 1, 9, 1, 4, 1, 1, 1, 6, 1, 1, 12, 96, 1, 1, 1, 6, 1, 1, 1, 48, 1, 1, 30, 6, 1, 1, 1, 24, 108, 1, 1, 6, 1, 1, 1, 4, 1, 12, 1, 6, 1, 1, 1, 16, 1, 56, 12, 180
Offset: 1

Views

Author

Antti Karttunen, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 27, although a(4) = 6 and a(27) = 9. See A344702.

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344697(n) = { my(u=A001615(n)); (u/gcd(u,sigma(n))); };

Formula

a(n) = A001615(n) / A344695(n).
Showing 1-10 of 323 results. Next