cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A323364 Sum of Dedekind's psi, A001615, and its Dirichlet inverse, A323363.

Original entry on oeis.org

2, 0, 0, 9, 0, 24, 0, 9, 16, 36, 0, 12, 0, 48, 48, 27, 0, 24, 0, 18, 64, 72, 0, 60, 36, 84, 32, 24, 0, 0, 0, 45, 96, 108, 96, 84, 0, 120, 112, 90, 0, 0, 0, 36, 48, 144, 0, 84, 64, 72, 144, 42, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 64, 99, 168, 0, 0, 54, 192, 0, 0, 132, 0, 228, 96, 60, 192, 0, 0, 126, 112, 252, 0, 288, 216, 264, 240, 180, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Crossrefs

Programs

A323372 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => A003557(i) = A003557(j) and A323363(i) = A323363(j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 29, 65, 66, 67, 68, 69, 58, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

Restricted growth sequence transform of ordered pair [A003557(n), A323363(n)].
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A323364(i) = A323364(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    v323363 = DirInverse(vector(up_to,n,A001615(n)));
    A323363(n) = v323363[n];
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    v323372 = rgs_transform(vector(up_to, n, [A003557(n), A323363(n)]));
    A323372(n) = v323372[n];

A324335 a(n) = A323363(A005940(1+n)), where A005940 is the Doudna sequence and A323363 is the Dirichlet inverse of Dedekind's psi.

Original entry on oeis.org

1, -3, -4, 3, -6, 12, 4, -3, -8, 18, 24, -12, 6, -12, -4, 3, -12, 24, 32, -18, 48, -72, -24, 12, 8, -18, -24, 12, -6, 12, 4, -3, -14, 36, 48, -24, 72, -96, -32, 18, 96, -144, -192, 72, -48, 72, 24, -12, 12, -24, -32, 18, -48, 72, 24, -12, -8, 18, 24, -12, 6, -12, -4, 3, -18, 42, 56, -36, 84, -144, -48, 24, 112, -216, -288, 96, -72, 96, 32, -18
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A323363(A005940(1+n)).

A323401 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A323363(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 32, 36, 3, 37, 32, 38, 39, 40, 3, 41, 3, 42, 43, 44, 45, 46, 3, 47, 42, 46, 3, 48, 3, 49, 50, 51, 42, 52, 3, 53, 54, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 59, 66, 3, 67, 68, 69, 3, 70, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Comments

Restricted growth sequence transform of function f, defined as f(n) = A323372(n) for all other numbers n, except f(p) = 0 for odd primes p.
For all i, j:
A323400(i) = A323400(j) => a(i) = a(j),
a(i) = a(j) => A322588(i) = A322588(j),
a(i) = a(j) => A323364(i) = A323364(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    v323363 = DirInverse(vector(up_to,n,A001615(n)));
    A323363(n) = v323363[n];
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    Aux323401(n) = if((n>2)&&isprime(n), 0, [A003557(n), A323363(n)]);
    v323401 = rgs_transform(vector(up_to, n, Aux323401(n)));
    A323401(n) = v323401[n];

A323400 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A000035(n), A003557(n), A323363(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 24, 26, 3, 27, 28, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 37, 40, 41, 42, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 48, 3, 51, 3, 52, 53, 54, 50, 55, 3, 56, 57, 58, 3, 59, 60, 61, 62, 63, 3, 64, 65, 66, 67, 68, 62, 69, 3, 70, 71, 72, 3, 73, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323369(i) = A323369(j),
a(i) = a(j) => A323401(i) = A323401(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    v323363 = DirInverse(vector(up_to,n,A001615(n)));
    A323363(n) = v323363[n];
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    Aux323400(n) = if((n>2)&&isprime(n), 0, [(n%2), A003557(n), A323363(n)]);
    v323400 = rgs_transform(vector(up_to, n, Aux323400(n)));
    A323400(n) = v323400[n];

A344695 a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers (A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.

Crossrefs

Cf. A000203, A001615, A005117, A244963, A344696, A344697, A344702, A344703 (numbers k for which a(k^2) > 1).
Subsets of range: A008864, A065091 (conjectured).

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1,n],DivisorSum[n,MoebiusMu[n/#]^2*#&]],{n,100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    (Python 3.8+)
    from math import prod, gcd
    from sympy import primefactors, divisor_sigma
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist)
    def A344695(n): return gcd(A001615(n),divisor_sigma(n)) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = gcd(A000203(n), A001615(n)).
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
a(A007913(n)) | a(n).
a(n) = gcd(A000203(n), A244963(n)) = gcd(A001615(n), A244963(n)).
a(n) = A000203(n) / A344696(n).
a(n) = A001615(n) / A344697(n).

A327564 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)^(k_j - 1)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 4, 1, 1, 3, 1, 1, 1, 27, 1, 4, 1, 3, 1, 1, 1, 9, 6, 1, 16, 3, 1, 1, 1, 81, 1, 1, 1, 12, 1, 1, 1, 9, 1, 1, 1, 3, 4, 1, 1, 27, 8, 6, 1, 3, 1, 16, 1, 9, 1, 1, 1, 3, 1, 1, 4, 243, 1, 1, 1, 3, 1, 1, 1, 36, 1, 1, 6, 3, 1, 1, 1, 27, 64, 1, 1, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 03 2020

Keywords

Examples

			a(12) = a(2^2 * 3) = (2 + 1)^(2 - 1) * (3 + 1)^(1 - 1) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1)^(#[[2]] - 1) & /@ FactorInteger[n]); Table[a[n], {n, 1, 85}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]++; f[k,2]--); factorback(f); \\ Michel Marcus, Mar 03 2020

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA001221(n/d) * A003557(n/d) * a(d).
a(n) = A003959(n) / A048250(n) = A003968(n) / A007947(n).
a(n) = A348038(n) * A348039(n) = A340368(n) / A173557(n). - Antti Karttunen, Oct 29 2021
Dirichlet g.f.: 1/(zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^s)). - Amiram Eldar, Dec 07 2023

A328639 Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-2)).

Original entry on oeis.org

1, -5, -10, 5, -26, 50, -50, -5, 10, 130, -122, -50, -170, 250, 260, 5, -290, -50, -362, -130, 500, 610, -530, 50, 26, 850, -10, -250, -842, -1300, -962, -5, 1220, 1450, 1300, 50, -1370, 1810, 1700, 130, -1682, -2500, -1850, -610, -260, 2650, -2210, -50, 50, -130
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A065958.

Crossrefs

Cf. A008683, A008836, A026424 (positions of negative terms), A046970, A065958, A323363, A328640.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^2, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 50}]
    Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^2 &], {n, 1, 50}]
    f[p_, e_] := (-1)^e*(p^2 + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
  • PARI
    a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA065958(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^2, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^e) = (-1)^e*(p^2 + 1). - Amiram Eldar, Nov 30 2020

A328640 Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-3)).

Original entry on oeis.org

1, -9, -28, 9, -126, 252, -344, -9, 28, 1134, -1332, -252, -2198, 3096, 3528, 9, -4914, -252, -6860, -1134, 9632, 11988, -12168, 252, 126, 19782, -28, -3096, -24390, -31752, -29792, -9, 37296, 44226, 43344, 252, -50654, 61740, 61544, 1134, -68922, -86688, -79508, -11988, -3528
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A065959.

Crossrefs

Cf. A008683, A008836, A026424 (positions of negative terms), A063453, A065959, A323363, A328639.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^3, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 45}]
    Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^3 &], {n, 1, 45}]
    f[p_, e_] := (-1)^e*(p^3+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^3)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA065959(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^3, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^) = (-1)^e*(p^3+1). - Amiram Eldar, Dec 03 2022

A347092 Dirichlet inverse of A322577, which is the convolution of Dedekind psi with Euler phi.

Original entry on oeis.org

1, -4, -6, 5, -10, 24, -14, -4, 10, 40, -22, -30, -26, 56, 60, 5, -34, -40, -38, -50, 84, 88, -46, 24, 26, 104, -6, -70, -58, -240, -62, -4, 132, 136, 140, 50, -74, 152, 156, 40, -82, -336, -86, -110, -100, 184, -94, -30, 50, -104, 204, -130, -106, 24, 220, 56, 228, 232, -118, 300, -122, 248, -140, 5, 260, -528, -134
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2021

Keywords

Comments

Multiplicative because A322577 is.

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes
    a n = product . map (\(p, e) -> if even e then 1 + unPrime p^2 else -2*unPrime p) . factorise $ n -- Sebastian Karlsson, Oct 29 2021
    
  • Mathematica
    f[p_, e_] := If[EvenQ[e], p^2 + 1, -2*p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2023 *)
  • PARI
    up_to = 16384;
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A322577(n) = sumdiv(n,d,A001615(n/d)*eulerphi(d));
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA322577(n)));
    A347092(n) = v347092[n];
    
  • PARI
    A347092(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]%2, -2*f[i, 1], 1+(f[i, 1]^2))); }; \\ (after Sebastian Karlsson's multiplicative formula) - Antti Karttunen, Nov 11 2021
    
  • Python
    from sympy import factorint, prod
    def f(p, e): return 1 + p**2 if e%2 == 0 else -2*p
    def a(n):
        factors = factorint(n)
        return prod(f(p, factors[p]) for p in factors) # Sebastian Karlsson, Oct 29 2021

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A322577(n/d) * a(d).
a(n) = A347093(n) - A322577(n).
From Sebastian Karlsson, Oct 29 2021: (Start)
Dirichlet g.f.: zeta(2*s)/zeta(s-1)^2.
a(n) = Sum_{d|n} A323363(n/d)*A023900(d).
Multiplicative with a(p^e) = 1 + p^2 if e is even, -2*p if e is odd. (End)
Showing 1-10 of 11 results. Next