cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351266 Sum of the cubes of the squarefree divisors of n.

Original entry on oeis.org

1, 9, 28, 9, 126, 252, 344, 9, 28, 1134, 1332, 252, 2198, 3096, 3528, 9, 4914, 252, 6860, 1134, 9632, 11988, 12168, 252, 126, 19782, 28, 3096, 24390, 31752, 29792, 9, 37296, 44226, 43344, 252, 50654, 61740, 61544, 1134, 68922, 86688, 79508, 11988, 3528, 109512, 103824
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^3 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(4) = 9; a(4) = Sum_{d|4} d^3 * mu(d)^2 = 1^3*1 + 2^3*1 + 4^3*0 = 9.
		

Crossrefs

Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), this sequence (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^3); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d), d^3)); \\ Michel Marcus, Feb 06 2022

Formula

a(n) = Sum_{d|n} d^3 * mu(d)^2.
a(n) = abs(A328640(n)).
G.f.: Sum_{k>=1} mu(k)^2 * k^3 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^3. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = zeta(4)/(4*zeta(2)) = Pi^2/60 = 0.164493... . - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2s-6). - Michael Shamos, Feb 09 2025

A328639 Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-2)).

Original entry on oeis.org

1, -5, -10, 5, -26, 50, -50, -5, 10, 130, -122, -50, -170, 250, 260, 5, -290, -50, -362, -130, 500, 610, -530, 50, 26, 850, -10, -250, -842, -1300, -962, -5, 1220, 1450, 1300, 50, -1370, 1810, 1700, 130, -1682, -2500, -1850, -610, -260, 2650, -2210, -50, 50, -130
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A065958.

Crossrefs

Cf. A008683, A008836, A026424 (positions of negative terms), A046970, A065958, A323363, A328640.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^2, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 50}]
    Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^2 &], {n, 1, 50}]
    f[p_, e_] := (-1)^e*(p^2 + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
  • PARI
    a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA065958(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^2, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^e) = (-1)^e*(p^2 + 1). - Amiram Eldar, Nov 30 2020
Showing 1-2 of 2 results.