cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A344700 Numbers k for which A306927(k) [= A001615(k)-k] is a multiple of A344705(k) [= A001615(k)-A001065(k)], and their quotient is nonnegative.

Original entry on oeis.org

1, 6, 24, 28, 168, 496, 864, 1080, 1520, 1836, 2016, 2088, 2112, 2520, 2912, 2976, 3000, 3024, 3240, 3800, 8128, 9000, 11088, 11232, 11448, 14160, 14688, 16920, 17028, 18360, 19872, 20520, 20880, 25280, 25488, 27552, 29376, 30800, 31200, 31320, 31968, 35400, 39240, 44064, 48768, 49896, 50760, 51480, 51660, 52200, 55680
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

Numbers k for which A344704(k) = A344705(k), i.e., numbers k such that gcd(A001615(k)-k, A001615(k)-A001065(k)) = A001615(k) - A001065(k).
Note that A306927(k) is always nonnegative, but A344705(k) = A033879(k) + A306927(k) gets also negative values. Number k is perfect only when A033879(k) = A344705(k) - A306927(k) = 0, that is, when A344705(k) = A306927(k), which necessitates that A306927(k) should be a multiple of A344705(k), and their quotient should be nonnegative (actually = +1).
In the range 1 .. 2^31 there are 782 such numbers, of which only the initial 1 is odd.

Crossrefs

Cf. A000203, A001065, A001615, A033879, A244963, A306927, A344704, A344705, A344752 (gives the quotient A306927(k)/A344705(k) computed for these terms), A344753.
Cf. A000396 (subsequence).
Cf. also A344754, A344755.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); (gcd(t-n,u)==u); };
    \\ Alternatively as:
    isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); ((u>0)&&(0==((t-n)%u))); };

A325449 Psi-untouchable numbers: impossible values for A306927(n) = A001615(n) - n.

Original entry on oeis.org

30, 38, 58, 60, 66, 94, 98, 102, 118, 120, 132, 138, 146, 158, 174, 178, 188, 190, 204, 206, 222, 238, 240, 246, 262, 264, 276, 278, 282, 290, 292, 298, 306, 318, 322, 326, 338, 348, 354, 374, 380, 390, 398, 402, 406, 408, 426, 430, 444, 458, 462, 474, 476, 478
Offset: 1

Views

Author

Amiram Eldar, Sep 06 2019

Keywords

Comments

Analogous to untouchable numbers (A005114) with Dedekind psi function (A001615) instead of the sum of divisors function, sigma (A000203).
te Riele named these numbers psi_1-untouchable. He calculated the first 2896 terms (terms below 20000). He proved that this sequence is infinite by showing that all the numbers of the form 2^k*3*5 (k >= 1, A110286(k) except for k = 0) are psi-untouchables.

Crossrefs

Programs

  • Mathematica
    f[1] = 0; f[n_] := n*(Times @@ (1 + 1/FactorInteger[n][[;; , 1]]) - 1); m = 300; v = Table[0, {m}]; Do[j = f[k]; If[2 <= j <= m, v[[j]]++], {k, 1, m^2}]; Rest[Position[v, _?(# == 0 &)] // Flatten]

A344752 Quotient A306927(k) / A344705(k) computed for such k >= 1 that the quotient is a nonnegative natural number. (The k are given by A344700.)

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 12, 21, 2, 3, 36, 4, 4, 61, 2, 3, 5, 243, 36, 2, 1, 70, 345, 90, 5, 5, 38, 11, 3, 131, 25, 87, 172, 2, 9, 5, 228, 5, 20, 43, 18, 5, 10, 304, 3, 1035, 31, 1301, 7, 172, 8, 554, 60, 15, 295, 59, 14, 150, 110, 7, 2439, 258, 371, 5, 549, 8, 13, 15, 63, 1134, 24, 900, 23, 50, 7, 4, 27, 1292, 254, 6681, 5, 18
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    isA344700_and_give_quotient(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); if(((u>0)&&(0==((t-n)%u))), ((t-n)/u), 0); };
    for(n=1,2^17,x=isA344700_and_give_quotient(n); if(x>0||(1==n), print1(x,", ")));

A344753 a(n) = sigma(n) + psi(n) - 2n = Sum_{d|n, d

Original entry on oeis.org

0, 2, 2, 5, 2, 12, 2, 11, 7, 16, 2, 28, 2, 20, 18, 23, 2, 39, 2, 38, 22, 28, 2, 60, 11, 32, 22, 48, 2, 84, 2, 47, 30, 40, 26, 91, 2, 44, 34, 82, 2, 108, 2, 68, 60, 52, 2, 124, 15, 83, 42, 78, 2, 120, 34, 104, 46, 64, 2, 192, 2, 68, 74, 95, 38, 156, 2, 98, 54, 148, 2, 195, 2, 80, 94, 108, 38, 180, 2, 170, 67, 88, 2
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

Sigma is the sum of divisors (A000203), and psi is Dedekind psi-function (A001615). Coincides with the latter only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[d + If[SquareFreeQ[n/d], d, 0], {d, Most[Divisors[n]]}];
    Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A344753(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA008966(n/d) * d).
a(n) = A001065(n) + A306927(n).
a(n) = A001615(n) - A033879(n).
a(n) = A344705(n) + 2*A001065(n) - n.
For squarefree n, a(n) = 2*A001065(n).
a(n) = A344997(n) / A173557(n) = A344998(n) / A342001(n). - Antti Karttunen, Jun 06 2021
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = Pi^2/6 + 15/Pi^2 - 2 = 1.164751... . - Amiram Eldar, Dec 08 2023

Extensions

New primary definition added by Antti Karttunen, Jun 06 2021

A344755 Numbers k such that A344753(k) is a multiple of A048250(k), and k is a multiple of A344753(k)/A048250(k).

Original entry on oeis.org

6, 28, 150, 496, 528, 1980, 4560, 8128, 8736, 11400, 19872, 20664, 75840, 82080, 253080, 254880, 741744, 1627290, 5130300, 5607360, 7529760, 19645440, 20718720, 33550336, 35092512, 45643392, 45995040, 56424960, 86944320, 169910136, 174013920, 180442080, 196378992, 242040960, 304577280, 314511360, 326611440, 451344960
Offset: 1

Views

Author

Antti Karttunen, May 29 2021

Keywords

Comments

Numbers k for which A344753(k)/A048250(k) is a divisor of k.
Perfect numbers (A000396, including also any hypothetical odd terms) are included as only on them A001615 coincides with A344753, and because A001615(n) = A003557(n)*A048250(n), with A003557(n) being a divisor of n.

Crossrefs

Subsequence of A344754.
Cf. also A344700.

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A344753(n) = sumdiv(n,d,(dA344755(n) = { my(t=A344753(n),u=A048250(n)); ((0==(t%u))&&(0==(n%(t/u)))); };

A344705 a(n) = n + A001615(n) - sigma(n), where A001615 is the Dedekind psi-function, and sigma(n) gives the sum of divisors of n; difference between psi and the sum of proper divisors.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 8, 10, 11, 8, 13, 14, 15, 9, 17, 15, 19, 14, 21, 22, 23, 12, 24, 26, 23, 20, 29, 30, 31, 17, 33, 34, 35, 17, 37, 38, 39, 22, 41, 42, 43, 32, 39, 46, 47, 20, 48, 47, 51, 38, 53, 42, 55, 32, 57, 58, 59, 36, 61, 62, 55, 33, 65, 66, 67, 50, 69, 70, 71, 21, 73, 74, 71, 56, 77, 78, 79, 38, 68, 82
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

First negative term occurs as a(1440) = -18.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p-1); a[1] = 1; a[n_] := Module[{fct = FactorInteger[n]}, n * (Times @@ (1 + 1/fct[[;; , 1]]) + 1) - Times @@ f @@@ fct]; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d));
    A344705(n) = ((n + A001615(n)) - sigma(n));

Formula

a(n) = A001615(n) - A001065(n) = n - A244963(n) = n + A001615(n) - sigma(n).
a(n) = A033879(n) + A306927(n).
a(n) = n + A344753(n) - 2*A001065(n).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = 15/Pi^2 + 1 - Pi^2/6 = 0.874883... . - Amiram Eldar, Dec 08 2023

A344754 Numbers k such that A344753(k) is a multiple of A048250(k).

Original entry on oeis.org

1, 6, 24, 28, 54, 96, 112, 150, 153, 216, 294, 384, 448, 486, 496, 528, 672, 726, 864, 1014, 1080, 1377, 1500, 1536, 1734, 1792, 1944, 1980, 1984, 2112, 2166, 2250, 2376, 2688, 3174, 3456, 3672, 3750, 4320, 4374, 4560, 4753, 5046, 5292, 5766, 6000, 6048, 6144, 6720, 7168, 7776, 7936, 8128, 8214, 8448, 8700, 8736, 9024
Offset: 1

Views

Author

Antti Karttunen, May 29 2021

Keywords

Crossrefs

Subsequences: A000396, A344755.
Cf. also A344700.

Programs

A344704 a(n) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 20, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 11, 1, 1, 6, 1, 10, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 5, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344704(n) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n));

Formula

a(n) = gcd(A306927(n), n-A244963(n)) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n)).
Showing 1-8 of 8 results.