cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A344752 Quotient A306927(k) / A344705(k) computed for such k >= 1 that the quotient is a nonnegative natural number. (The k are given by A344700.)

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 12, 21, 2, 3, 36, 4, 4, 61, 2, 3, 5, 243, 36, 2, 1, 70, 345, 90, 5, 5, 38, 11, 3, 131, 25, 87, 172, 2, 9, 5, 228, 5, 20, 43, 18, 5, 10, 304, 3, 1035, 31, 1301, 7, 172, 8, 554, 60, 15, 295, 59, 14, 150, 110, 7, 2439, 258, 371, 5, 549, 8, 13, 15, 63, 1134, 24, 900, 23, 50, 7, 4, 27, 1292, 254, 6681, 5, 18
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    isA344700_and_give_quotient(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); if(((u>0)&&(0==((t-n)%u))), ((t-n)/u), 0); };
    for(n=1,2^17,x=isA344700_and_give_quotient(n); if(x>0||(1==n), print1(x,", ")));

A344755 Numbers k such that A344753(k) is a multiple of A048250(k), and k is a multiple of A344753(k)/A048250(k).

Original entry on oeis.org

6, 28, 150, 496, 528, 1980, 4560, 8128, 8736, 11400, 19872, 20664, 75840, 82080, 253080, 254880, 741744, 1627290, 5130300, 5607360, 7529760, 19645440, 20718720, 33550336, 35092512, 45643392, 45995040, 56424960, 86944320, 169910136, 174013920, 180442080, 196378992, 242040960, 304577280, 314511360, 326611440, 451344960
Offset: 1

Views

Author

Antti Karttunen, May 29 2021

Keywords

Comments

Numbers k for which A344753(k)/A048250(k) is a divisor of k.
Perfect numbers (A000396, including also any hypothetical odd terms) are included as only on them A001615 coincides with A344753, and because A001615(n) = A003557(n)*A048250(n), with A003557(n) being a divisor of n.

Crossrefs

Subsequence of A344754.
Cf. also A344700.

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A344753(n) = sumdiv(n,d,(dA344755(n) = { my(t=A344753(n),u=A048250(n)); ((0==(t%u))&&(0==(n%(t/u)))); };

A344705 a(n) = n + A001615(n) - sigma(n), where A001615 is the Dedekind psi-function, and sigma(n) gives the sum of divisors of n; difference between psi and the sum of proper divisors.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 8, 10, 11, 8, 13, 14, 15, 9, 17, 15, 19, 14, 21, 22, 23, 12, 24, 26, 23, 20, 29, 30, 31, 17, 33, 34, 35, 17, 37, 38, 39, 22, 41, 42, 43, 32, 39, 46, 47, 20, 48, 47, 51, 38, 53, 42, 55, 32, 57, 58, 59, 36, 61, 62, 55, 33, 65, 66, 67, 50, 69, 70, 71, 21, 73, 74, 71, 56, 77, 78, 79, 38, 68, 82
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

First negative term occurs as a(1440) = -18.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p-1); a[1] = 1; a[n_] := Module[{fct = FactorInteger[n]}, n * (Times @@ (1 + 1/fct[[;; , 1]]) + 1) - Times @@ f @@@ fct]; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d));
    A344705(n) = ((n + A001615(n)) - sigma(n));

Formula

a(n) = A001615(n) - A001065(n) = n - A244963(n) = n + A001615(n) - sigma(n).
a(n) = A033879(n) + A306927(n).
a(n) = n + A344753(n) - 2*A001065(n).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = 15/Pi^2 + 1 - Pi^2/6 = 0.874883... . - Amiram Eldar, Dec 08 2023

A344754 Numbers k such that A344753(k) is a multiple of A048250(k).

Original entry on oeis.org

1, 6, 24, 28, 54, 96, 112, 150, 153, 216, 294, 384, 448, 486, 496, 528, 672, 726, 864, 1014, 1080, 1377, 1500, 1536, 1734, 1792, 1944, 1980, 1984, 2112, 2166, 2250, 2376, 2688, 3174, 3456, 3672, 3750, 4320, 4374, 4560, 4753, 5046, 5292, 5766, 6000, 6048, 6144, 6720, 7168, 7776, 7936, 8128, 8214, 8448, 8700, 8736, 9024
Offset: 1

Views

Author

Antti Karttunen, May 29 2021

Keywords

Crossrefs

Subsequences: A000396, A344755.
Cf. also A344700.

Programs

A344704 a(n) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 20, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 11, 1, 1, 6, 1, 10, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 5, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344704(n) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n));

Formula

a(n) = gcd(A306927(n), n-A244963(n)) = gcd(A001615(n)-n, sigma(n)-(A001615(n)+n)).
Showing 1-5 of 5 results.