cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A344753 a(n) = sigma(n) + psi(n) - 2n = Sum_{d|n, d

Original entry on oeis.org

0, 2, 2, 5, 2, 12, 2, 11, 7, 16, 2, 28, 2, 20, 18, 23, 2, 39, 2, 38, 22, 28, 2, 60, 11, 32, 22, 48, 2, 84, 2, 47, 30, 40, 26, 91, 2, 44, 34, 82, 2, 108, 2, 68, 60, 52, 2, 124, 15, 83, 42, 78, 2, 120, 34, 104, 46, 64, 2, 192, 2, 68, 74, 95, 38, 156, 2, 98, 54, 148, 2, 195, 2, 80, 94, 108, 38, 180, 2, 170, 67, 88, 2
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

Sigma is the sum of divisors (A000203), and psi is Dedekind psi-function (A001615). Coincides with the latter only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[d + If[SquareFreeQ[n/d], d, 0], {d, Most[Divisors[n]]}];
    Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A344753(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA008966(n/d) * d).
a(n) = A001065(n) + A306927(n).
a(n) = A001615(n) - A033879(n).
a(n) = A344705(n) + 2*A001065(n) - n.
For squarefree n, a(n) = 2*A001065(n).
a(n) = A344997(n) / A173557(n) = A344998(n) / A342001(n). - Antti Karttunen, Jun 06 2021
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = Pi^2/6 + 15/Pi^2 - 2 = 1.164751... . - Amiram Eldar, Dec 08 2023

Extensions

New primary definition added by Antti Karttunen, Jun 06 2021

A344755 Numbers k such that A344753(k) is a multiple of A048250(k), and k is a multiple of A344753(k)/A048250(k).

Original entry on oeis.org

6, 28, 150, 496, 528, 1980, 4560, 8128, 8736, 11400, 19872, 20664, 75840, 82080, 253080, 254880, 741744, 1627290, 5130300, 5607360, 7529760, 19645440, 20718720, 33550336, 35092512, 45643392, 45995040, 56424960, 86944320, 169910136, 174013920, 180442080, 196378992, 242040960, 304577280, 314511360, 326611440, 451344960
Offset: 1

Views

Author

Antti Karttunen, May 29 2021

Keywords

Comments

Numbers k for which A344753(k)/A048250(k) is a divisor of k.
Perfect numbers (A000396, including also any hypothetical odd terms) are included as only on them A001615 coincides with A344753, and because A001615(n) = A003557(n)*A048250(n), with A003557(n) being a divisor of n.

Crossrefs

Subsequence of A344754.
Cf. also A344700.

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A344753(n) = sumdiv(n,d,(dA344755(n) = { my(t=A344753(n),u=A048250(n)); ((0==(t%u))&&(0==(n%(t/u)))); };

A344700 Numbers k for which A306927(k) [= A001615(k)-k] is a multiple of A344705(k) [= A001615(k)-A001065(k)], and their quotient is nonnegative.

Original entry on oeis.org

1, 6, 24, 28, 168, 496, 864, 1080, 1520, 1836, 2016, 2088, 2112, 2520, 2912, 2976, 3000, 3024, 3240, 3800, 8128, 9000, 11088, 11232, 11448, 14160, 14688, 16920, 17028, 18360, 19872, 20520, 20880, 25280, 25488, 27552, 29376, 30800, 31200, 31320, 31968, 35400, 39240, 44064, 48768, 49896, 50760, 51480, 51660, 52200, 55680
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

Numbers k for which A344704(k) = A344705(k), i.e., numbers k such that gcd(A001615(k)-k, A001615(k)-A001065(k)) = A001615(k) - A001065(k).
Note that A306927(k) is always nonnegative, but A344705(k) = A033879(k) + A306927(k) gets also negative values. Number k is perfect only when A033879(k) = A344705(k) - A306927(k) = 0, that is, when A344705(k) = A306927(k), which necessitates that A306927(k) should be a multiple of A344705(k), and their quotient should be nonnegative (actually = +1).
In the range 1 .. 2^31 there are 782 such numbers, of which only the initial 1 is odd.

Crossrefs

Cf. A000203, A001065, A001615, A033879, A244963, A306927, A344704, A344705, A344752 (gives the quotient A306927(k)/A344705(k) computed for these terms), A344753.
Cf. A000396 (subsequence).
Cf. also A344754, A344755.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); (gcd(t-n,u)==u); };
    \\ Alternatively as:
    isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); ((u>0)&&(0==((t-n)%u))); };

A345004 Numbers k such that A345001(k)*A048250(k) is equal to A342001(k)*A344753(k) and A345001(n)/A342001(n) is an integer.

Original entry on oeis.org

6, 28, 496, 5292, 8128, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Equally, we may require that A344753(k)/A048250(k) is an integer, thus this is a subsequence of A344754.

Crossrefs

Intersection of A344754 and A345003.

Programs

A344994 Numbers k such that A173557(k) divides nonzero A051709(k).

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 27, 28, 32, 42, 48, 54, 60, 64, 96, 108, 112, 120, 126, 128, 150, 168, 176, 192, 204, 216, 240, 243, 250, 256, 294, 312, 378, 384, 396, 432, 440, 448, 456, 460, 480, 486, 496, 500, 504, 512, 540, 588, 672, 700, 768, 774, 828, 840, 864, 888, 924, 960, 972, 1000, 1014, 1024, 1080, 1134, 1176, 1216
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A344995, A345054 (subsequences).
Cf. also A344754, A345051.

Programs

  • PARI
    A051709(n) = ((sigma(n) + eulerphi(n)) - (2*n));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    isA344994(n) = { my(u=A051709(n)); ((u>0)&&(0==(u%A173557(n)))); };
Showing 1-5 of 5 results.