cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A173557 a(n) = Product_{primes p dividing n} (p-1).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 2, 12, 6, 8, 1, 16, 2, 18, 4, 12, 10, 22, 2, 4, 12, 2, 6, 28, 8, 30, 1, 20, 16, 24, 2, 36, 18, 24, 4, 40, 12, 42, 10, 8, 22, 46, 2, 6, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 8, 60, 30, 12, 1, 48, 20, 66, 16, 44, 24, 70, 2, 72, 36
Offset: 1

Views

Author

Keywords

Comments

This is A023900 without the signs. - T. D. Noe, Jul 31 2013
Numerator of c_n = Product_{odd p| n} (p-1)/(p-2). Denominator is A305444. The initial values c_1, c_2, ... are 1, 1, 2, 1, 4/3, 2, 6/5, 1, 2, 4/3, 10/9, 2, 12/11, 6/5, 8/3, 1, 16/15, ... [Yamasaki and Yamasaki]. - N. J. A. Sloane, Jan 19 2020
Kim et al. (2019) named this function the absolute Möbius divisor function. - Amiram Eldar, Apr 08 2020

Examples

			300 = 3*5^2*2^2 => a(300) = (3-1)*(2-1)*(5-1) = 8.
		

Crossrefs

Programs

  • Haskell
    a173557 1 = 1
    a173557 n = product $ map (subtract 1) $ a027748_row n
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Magma
    [EulerPhi(n)/(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // Vincenzo Librandi, Jan 20 2020
    
  • Maple
    A173557 := proc(n) local dvs; dvs := numtheory[factorset](n) ; mul(d-1,d=dvs) ; end proc: # R. J. Mathar, Feb 02 2011
    # second Maple program:
    a:= n-> mul(i[1]-1, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    a[n_] := Module[{fac = FactorInteger[n]}, If[n==1, 1, Product[fac[[i, 1]]-1, {i, Length[fac]}]]]; Table[a[n], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)[,1]); prod(k=1, #f, f[k]-1); \\ Michel Marcus, Oct 31 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020
    
  • PARI
    apply( {A173557(n)=vecprod([p-1|p<-factor(n)[,1]])}, [1..77]) \\ M. F. Hasler, Aug 14 2021
    
  • Python
    from math import prod
    from sympy import primefactors
    def A173557(n): return prod(p-1 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023
  • Scheme
    ;; With memoization-macro definec.
    (definec (A173557 n) (if (= 1 n) 1 (* (- (A020639 n) 1) (A173557 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
    

Formula

a(n) = A003958(n) iff n is squarefree. a(n) = |A023900(n)|.
Multiplicative with a(p^e) = p-1, e >= 1. - R. J. Mathar, Mar 30 2011
a(n) = phi(rad(n)) = A000010(A007947(n)). - Enrique Pérez Herrero, May 30 2012
a(n) = A000010(n) / A003557(n). - Jason Kimberley, Dec 09 2012
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 - 2p^(-s) + p^(1-s)). The Dirichlet inverse is multiplicative with b(p^e) = (1 - p) * (2 - p)^(e - 1) = Sum_k A118800(e, k) * p^k. - Álvar Ibeas, Nov 24 2017
a(1) = 1; for n > 1, a(n) = (A020639(n)-1) * a(A028234(n)). - Antti Karttunen, Nov 28 2017
From Vaclav Kotesovec, Jun 18 2020: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s-2) * Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868... (End)
a(n) = (-1)^A001221(n)*A023900(n). - M. F. Hasler, Aug 14 2021

Extensions

Definition corrected by M. F. Hasler, Aug 14 2021
Incorrect formula removed by Pontus von Brömssen, Aug 15 2021

A034953 Triangular numbers (A000217) with prime indices.

Original entry on oeis.org

3, 6, 15, 28, 66, 91, 153, 190, 276, 435, 496, 703, 861, 946, 1128, 1431, 1770, 1891, 2278, 2556, 2701, 3160, 3486, 4005, 4753, 5151, 5356, 5778, 5995, 6441, 8128, 8646, 9453, 9730, 11175, 11476, 12403, 13366, 14028, 15051, 16110, 16471, 18336, 18721, 19503
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1998

Keywords

Comments

The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Given a rectangular prism with sides 1, p, p^2 for p = n-th prime (n > 1), the area of the six sides divided by the volume gives a remainder which is 4*a(n). - J. M. Bergot, Sep 12 2011
The infinite sum over the reciprocals is given by 2*A179119. - Wolfdieter Lang, Jul 10 2019

Crossrefs

Programs

  • Haskell
    a034953 n = a034953_list !! (n-1)
    a034953_list = map a000217 a000040_list
    -- Reinhard Zumkeller, Sep 23 2011
  • Maple
    a:= n-> (p-> p*(p+1)/2)(ithprime(n)):
    seq(a(n), n=1..65);  # Alois P. Heinz, Apr 20 2022
  • Mathematica
    t[n_] := n(n + 1)/2; Table[t[Prime[n]], {n, 44}] (* Robert G. Wilson v, Aug 12 2004 *)
    (#(# + 1))/2&/@Prime[Range[50]] (* Harvey P. Dale, Feb 27 2012 *)
    With[{nn=200},Pick[Accumulate[Range[nn]],Table[If[PrimeQ[n],1,0],{n,nn}],1]] (* Harvey P. Dale, Mar 05 2023 *)
  • PARI
    forprime(p=2,1e3,print1(binomial(p+1,2)", ")) \\ Charles R Greathouse IV, Jul 19 2011
    
  • PARI
    apply(n->binomial(n+1,2),primes(100)) \\ Charles R Greathouse IV, Jun 04 2013
    

Formula

a(n) = A000217(A000040(n)). - Omar E. Pol, Jul 27 2009
a(n) = Sum_{k=1..prime(n)} k. - Wesley Ivan Hurt, Apr 27 2021
Product_{n>=1} (1 - 1/a(n)) = A307868. - Amiram Eldar, Nov 07 2022

A071974 Numerator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Cf. A071975. Differs from A056622 at a(32).
For other bijective mappings from integers to positive rationals see A002487, A020652/A020653, A038568/A038569, A229994/A077610, A295515.
Cf. A307868.

Programs

  • Haskell
    a071974 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (1 - e `mod` 2) * e `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
    
  • Mathematica
    f[{p_, a_}] := If[EvenQ[a], p^(a/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
    Table[Sqrt@ SelectFirst[Reverse@ Divisors@ n, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 104}] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,1,v[1,k]^(v[2,k]/2)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A071974(n): return prod(p**(e>>1) for p, e in factorint(n).items() if e&1^1) # Chai Wah Wu, Jul 27 2024

Formula

If n=Product p_i^e_i, then a_n=Product p_i^f(e_i), where f(n)=n/2 if n is even and f(n)=0 if n is odd. - Reiner Martin, Jul 08 2002
a(n^2) = n, A071975(n^2) = 1, cf. A000290; a(2*(2*n-1)^2) = 2*n+1, A071975(2*(2*n-1)^2) = 2, cf. A077591. - Reinhard Zumkeller, Jul 10 2011
From Amiram Eldar, Nov 02 2023, Jul 26 2024: (Start)
a(n) = sqrt(A350388(n)) (square root of largest unitary divisor of n that is a square).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-1)). (End)
From Vaclav Kotesovec, May 05 2025: (Start)
Let f(s) = Product_{p prime} (1 - (p^s + p)/((p^s + 1)*p^(2*s))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A307868 = Product_{p prime} (1 - 2/(p*(1+p))) = 0.4716806136129978680752356330804820874259263820069868836357372554177321...
f'(1) = f(1) * Sum_{p prime} (5*p+3)*log(p) / ((p+1)*(p^2+p-2)) = f(1) * 2.1244279471327068377850377690765768532203174482128717024402373817115555...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

More terms from Reiner Martin, Jul 08 2002
Additional references supplied by Kevin Ryde added by N. J. A. Sloane, May 31 2012

A162511 Multiplicative function with a(p^e) = (-1)^(e-1).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009

Keywords

Crossrefs

Programs

  • Maple
    A162511 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := a*(-1)^(op(2,f)-1) ;
        end do:
        return a;
    end proc: # R. J. Mathar, May 20 2017
  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]); Array[a, 100] (* Jean-François Alcover, Apr 24 2017, after Reinhard Zumkeller *)
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,-(-1)^f[i]) \\ Charles R Greathouse IV, Mar 09 2015
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(-1)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017
    
  • Python
    from functools import reduce
    from sympy import factorint
    def A162511(n): return -1 if reduce(lambda a,b:~(a^b), factorint(n).values(),0)&1 else 1 # Chai Wah Wu, Jan 01 2023

Formula

Multiplicative function with a(p^e)=(-1)^(e-1) for any prime p and any positive exponent e.
a(n) = 1 when n is a squarefree number (A005117).
From Reinhard Zumkeller, Jul 08 2009 (Start)
a(n) = (-1)^(A001222(n)-A001221(n)).
a(A162644(n)) = +1; a(A162645(n)) = -1. (End)
a(n) = A076479(n) * A008836(n). - R. J. Mathar, Mar 30 2011
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A307868. - Amiram Eldar, Sep 18 2022
Dirichlet g.f.: Product_{p prime} ((p^s + 2)/(p^s + 1)). - Amiram Eldar, Oct 26 2023

A374456 The Euler phi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 8, 12, 18, 28, 8, 30, 16, 20, 16, 24, 36, 18, 24, 16, 40, 12, 42, 22, 46, 32, 52, 18, 40, 24, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 40, 88, 72, 60, 46, 72, 32, 96
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to phi: A002618, A049200, A323333, A358039.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374457.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p-1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A000010(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 / A065463^2 = 0.95051132596733153581... .

A318305 a(n) = Product_{primes p dividing n} p - Product_{primes p dividing n} (p-1).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 4, 1, 8, 7, 1, 1, 4, 1, 6, 9, 12, 1, 4, 1, 14, 1, 8, 1, 22, 1, 1, 13, 18, 11, 4, 1, 20, 15, 6, 1, 30, 1, 12, 7, 24, 1, 4, 1, 6, 19, 14, 1, 4, 15, 8, 21, 30, 1, 22, 1, 32, 9, 1, 17, 46, 1, 18, 25, 46, 1, 4, 1, 38, 7, 20, 17, 54, 1, 6, 1, 42, 1, 30, 21, 44, 31, 12, 1, 22, 19, 24, 33, 48, 23, 4, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Examples

			For n = 45 = 3^2 * 5, the prime factors are 3 and 5, thus a(45) = (3*5) - (2*4) = 15 - 8 = 7.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065463 - A307868 = 0.232761... . - _Amiram Eldar_, Dec 07 2023
		

Crossrefs

Programs

Formula

a(n) = A051953(n)/A003557(n) = A007947(n) - A173557(n) = A173557(n) - A318304(n).

Extensions

Corrected the notation in the definition - Antti Karttunen, Feb 03 2024

A318841 a(n) = n - A173557(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 7, 6, 1, 10, 1, 8, 7, 15, 1, 16, 1, 16, 9, 12, 1, 22, 21, 14, 25, 22, 1, 22, 1, 31, 13, 18, 11, 34, 1, 20, 15, 36, 1, 30, 1, 34, 37, 24, 1, 46, 43, 46, 19, 40, 1, 52, 15, 50, 21, 30, 1, 52, 1, 32, 51, 63, 17, 46, 1, 52, 25, 46, 1, 70, 1, 38, 67, 58, 17, 54, 1, 76, 79, 42, 1, 72, 21, 44, 31, 78, 1, 82, 19, 70, 33, 48
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n - Times @@ (FactorInteger[n][[;;, 1]] - 1); a[1] = 0; Array[a, 100] (* Amiram Eldar, Dec 16 2023 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A318841(n) = (n-A173557(n));

Formula

a(n) = n - A173557(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - A307868 = 0.528319... . - Amiram Eldar, Dec 16 2023

A078636 a(n) = rad(n*(n+1)).

Original entry on oeis.org

2, 6, 6, 10, 30, 42, 14, 6, 30, 110, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 506, 138, 30, 130, 78, 42, 406, 870, 930, 62, 66, 1122, 1190, 210, 222, 1406, 1482, 390, 410, 1722, 1806, 946, 330, 690, 2162, 282, 42, 70, 510, 1326, 1378, 318, 330, 770, 798
Offset: 1

Views

Author

Jon Perry, Dec 12 2002

Keywords

Examples

			a(3) = 6 as rad(3*4) = rad(12) = rad(2*2*3) = 2*3 = 6.
		

Crossrefs

Programs

  • Maple
    A078636 := proc(n)
        A007947(n)*A007947(n+1) ;
    end proc:
    seq( A078636(n),n=1..10) ; # R. J. Mathar, Mar 15 2023
  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := rad[n(n+1)];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2024 *)
  • PARI
    rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i])
    for (k=1,100,print1(rad(k*(k+1))", "))

Formula

From Reinhard Zumkeller, Aug 05 2003: (Start)
a(n) = rad(n*(n+1)) = rad(n)*rad(n+1).
mu(a(n)) = mu(rad(n*(n+1))) = mu(rad(n))*mu(rad(n+1)), where rad=A007947 and mu=A008683. (End)
From Reinhard Zumkeller, Apr 10 2008: (Start)
a(A014601(n)) = A139131(A014601(n)).
a(n) = A139131(n) * A014695(n). (End)
From Amiram Eldar, Apr 04 2025: (Start)
a(n) = A007947(A002378(n)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime} (1 - 2/(p*(p+1))) = 0.4716806... (A307868). (End)

A318304 a(n) = A083254(n)/A003557(n) = (2*A173557(n) - A007947(n)).

Original entry on oeis.org

1, 0, 1, 0, 3, -2, 5, 0, 1, -2, 9, -2, 11, -2, 1, 0, 15, -2, 17, -2, 3, -2, 21, -2, 3, -2, 1, -2, 27, -14, 29, 0, 7, -2, 13, -2, 35, -2, 9, -2, 39, -18, 41, -2, 1, -2, 45, -2, 5, -2, 13, -2, 51, -2, 25, -2, 15, -2, 57, -14, 59, -2, 3, 0, 31, -26, 65, -2, 19, -22, 69, -2, 71, -2, 1, -2, 43, -30, 77, -2, 1, -2, 81, -18, 43, -2, 25
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A083254(n)/A003557(n) = 2*A173557(n) - A007947(n).
a(n) = A173557(n) - A318305(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 2 * A307868 - A065463 = 0.238919... . - Amiram Eldar, Dec 07 2023

A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 3, 5, 1, 1, 5, 3, 6, 3, 2, 35, 8, 1, 9, 3, 3, 5, 11, 5, 0, 3, 1, 9, 14, 1, 15, 63, 5, 4, 6, 3, 18, 9, 6, 5, 20, 3, 21, 15, 1, 11, 23, 35, -3, 0, 8, 9, 26, 1, 10, 15, 9, 7, 29, 3, 30, 15, 3, 231, 12, 5, 33, 3, 11, 3, 35, 5, 36, 9, 0, 27, 15, 3, 39, 35, 3, 10, 41, 9, 16, 21, 14, 25, 44, 1, 18, 33, 15, 23, 18, 63, 48, -3, 5, 0, 50, 4, 51, 15, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Crossrefs

Cf. A173557, A318318 (denominators).
Cf. also A317925, A317935.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 16384;
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
    A318317(n) = numerator(v318317_18[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} A318317(k) / A318318(k) ~ n^2 * sqrt(f(2)/(4*Pi*log(n))) * (1 + (1 - gamma - f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868...
f'(2)/f(2) = Sum_{p prime} 2*p*log(p) / ((p+1)*(p^2+p-2)) = 0.7254208328519472161058521308839896283514823... and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-10 of 19 results. Next