cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Reiner Martin

Reiner Martin's wiki page.

Reiner Martin has authored 31 sequences. Here are the ten most recent ones:

A063377 Sophie Germain degree of n: number of iterations of n under f(k) = 2k+1 before we reach a number that is not a prime.

Original entry on oeis.org

0, 5, 2, 0, 4, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Author

Reiner Martin, Jul 14 2001

Keywords

Comments

a(n) >= 1 means that n is prime; a(n) >= 2 means that n is a Sophie Germain prime. Is the Sophie Germain degree always finite? Is it unbounded?
A339579 is an essentially identical sequence from 1981. - N. J. A. Sloane, Dec 24 2020
From Michael S. Branicky, Dec 24 2020: (Start)
All n > 5 with a(n) >= 4 satisfy n == 9 (mod 10).
Proof. Let f^k(n) denote iterates of 2*k + 1, with f^0(n) = n.
n != 0, 2, 4, 5, 6, or 8 (mod 10), otherwise f^0(n) is not prime, and a(n) = 0.
n != 7 (mod 10) otherwise f^1(n) = 2*n + 1 == 5 (mod 10), not prime, and a(n) <= 1.
n != 3 (mod 10) otherwise f^2(n) = 4*r + 3 == 5 (mod 10), not prime, and a(n) <= 2.
n != 1 (mod 10) otherwise f^3(n) = 8*r + 7 == 5 (mod 10), not prime, and a(n) <= 3.
(End)
From Peter Schorn, Jan 18 2021: (Start)
The Sophie Germain degree is always finite.
Proof. Let f^k(n) denote iterates of 2*k + 1 with closed form f^k(n) = 2^k * n + 2^k - 1.
There are three cases for n:
1. If n is not a prime then f^0(n) = n is composite.
2. If n = 2 then f^5(2) = 95 is composite.
3. If n is an odd prime then f^(n-1)(n) = 2^(n-1) * n + 2^(n-1) - 1 is divisible by n since 2^(n-1) == 1 (mod n) by Fermat's theorem.
(End)

Examples

			a(2)=5 because 2, 5, 11, 23, 47 are prime but 95 is not.
		

Crossrefs

For records see A339581.
See also Cunningham chains, A005602, A005603.

Programs

  • Mathematica
    Table[Length[NestWhileList[2#+1&,n,PrimeQ[#]&]],{n,100}]-1 (* Harvey P. Dale, Aug 08 2020 *)
  • PARI
    a(n) = {if (! isprime(n), return (0)); d = 1; k = n; while(isprime(p = 2*k+1), k = p; d++;); return (d);} \\ Michel Marcus, Jul 22 2013

Formula

From Michael S. Branicky, Dec 24 2020: (Start)
See proof above.
a(n) = 0 if n == 0, 2, 4, 5, 6, 8 (mod 10), and n != 2 or 5.
a(n) <= 1 if n == 7 (mod 10).
a(n) <= 2 if n == 3 (mod 10).
a(n) <= 3 if n == 1 (mod 10).
(End)

Extensions

Term a(1) = 0 prepended by Antti Karttunen, Oct 09 2018.

A063378 Smallest number whose Sophie Germain degree (see A063377) is n.

Original entry on oeis.org

4, 7, 3, 11, 5, 2, 89, 1122659, 19099919, 85864769, 26089808579, 665043081119, 554688278429, 4090932431513069, 95405042230542329
Offset: 0

Author

Reiner Martin, Jul 14 2001

Keywords

Comments

Also known as Cunningham chains of length n of the first kind.
For each positive integer n, is there some integer with Sophie Germain degree of n?

Examples

			Using f(x)=2x+1, 11 -> 23 -> 47 -> 95, which is composite; thus a(3)=11.
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{k = 2}, While[ Length[ NestWhileList[2# + 1 &, k, PrimeQ]] != n + 1, k = NextPrim[k]]; k]; Table[f[n], {n, 1, 8}]

Extensions

More terms from Jud McCranie, Jul 20 2001
Edited and extended by Robert G. Wilson v, Nov 21 2002

A063650 Number of ways to tile a 6 X n rectangle with 1 X 1 and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 13, 43, 269, 1213, 6427, 31387, 159651, 795611, 4005785, 20064827, 100764343, 505375405, 2536323145, 12724855013, 63851706457, 320373303983, 1607526474153, 8065864257905, 40471399479495, 203068825478591, 1018918472214687, 5112520236292975, 25652573037707685
Offset: 0

Author

Reiner Martin, Jul 23 2001

Keywords

Crossrefs

Column k=6 of A245013.

Programs

  • Magma
    I:=[1,1,13,43,269,1213]; [n le 6 select I[n] else 2*Self(n-1)+16*Self(n-2)+Self(n-3)-27*Self(n-4)+Self(n-5)+4*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 30 2018
  • Mathematica
    LinearRecurrence[{2, 16, 1, -27, 1, 4}, {1, 1, 13, 43, 269, 1213}, 22] (* Jean-François Alcover, Oct 30 2018 *)
    CoefficientList[Series[(-1+x+5*x^2-x^4)/(-1+2*x+16*x^2+x^3-27*x^4+x^5+4*x^6), {x, 0, 50}], x] (* Stefano Spezia, Oct 30 2018 *)

Formula

G.f.: ( -1+x+5*x^2-x^4 ) / ( -1+2*x+16*x^2+x^3-27*x^4+x^5+4*x^6 ).
a(n) = 2a(n-1) + 16a(n-2) + a(n-3) - 27a(n-4) + a(n-5) + 4a(n-6) - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006

A063651 Number of ways to tile a 7 X n rectangle with 1 X 1 and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 21, 85, 747, 4375, 31387, 202841, 1382259, 9167119, 61643709, 411595537, 2758179839, 18448963469, 123518353059, 826573277157, 5532716266089, 37028886137273, 247839719105625, 1658772577825883, 11102227136885119
Offset: 0

Author

Reiner Martin, Jul 23 2001

Keywords

Crossrefs

Column k=7 of A245013.

Formula

a(n) = 3a(n-1) + 30a(n-2) - 17a(n-3) - 138a(n-4) + 85a(n-5) + 116a(n-6) - 42a(n-7) - 32a(n-8). - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006
G.f.: ( 1 -2*x -12*x^2 +9*x^3 +17*x^4 -6*x^5 -6*x^6 ) / ( 1 -3*x -30*x^2 +17*x^3 +138*x^4 -85*x^5 -116*x^6 +42*x^7 +32*x^8 ). - Colin Barker, Nov 29 2012

A063653 Number of ways to tile a 9 X n rectangle with 1 X 1 and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 55, 341, 5933, 59925, 795611, 9167119, 113555791, 1355115601, 16484061769, 198549329897, 2403674442213, 29023432116879, 350917980468767, 4239961392742933, 51247532773412135, 619304595300705203, 7484739788762129061, 90454037365096154821
Offset: 0

Author

Reiner Martin, Jul 23 2001

Keywords

Comments

a(8) is number of ways can kings be placed on an 8 X 8 chessboard so that no two kings can attack each other. - Vaclav Kotesovec, Apr 02 2010

Crossrefs

Formula

a(n) = 6*a(n-1) + 110*a(n-2) - 262*a(n-3) - 2786*a(n-4) + 5916*a(n-5) + 25168*a(n-6) - 53907*a(n-7) - 95299*a(n-8) + 197820*a(n-9) + 193866*a(n-10) - 340168*a(n-11) - 228528*a(n-12) + 279636*a(n-13) + 137864*a(n-14) - 108909*a(n-15) - 33736*a(n-16) + 20214*a(n-17) + 2460*a(n-18) - 1296*a(n-19).

Extensions

Subscripts in formula repaired by Ron Hardin, Dec 29 2010

A063654 Number of ways to tile a 10 X n rectangle with 1 X 1 and 2 X 2 tiles.

Original entry on oeis.org

1, 1, 89, 683, 16717, 221799, 4005785, 61643709, 1029574631, 16484061769, 269718819131, 4364059061933, 71019435701025, 1152314664726905, 18725412666911121, 304052089851133193, 4939032362569285343
Offset: 0

Author

Reiner Martin, Jul 23 2001

Keywords

Crossrefs

Column k=10 of A245013.

Formula

a(n) = 11a(n-1) + 195a(n-2) - 1459a(n-3) - 10427a(n-4) + 79002a(n-5) + 188873a(n-6) - 1922453a(n-7) - 522744a(n-8) + 21726132a(n-9) - 11085988a(n-10) - 137059276a(n-11) + 114023550a(n-12) + 533938164a(n-13) - 503739499a(n-14) - 1345858084a(n-15) + 1272444796a(n-16) + 2223076291a(n-17) - 1997887777a(n-18) - 2382027317a(n-19) + 2015253425a(n-20) + 1613022647a(n-21) - 1309632545a(n-22) - 660948344a(n-23) + 533727589a(n-24) + 152685069a(n-25) - 128889883a(n-26) - 17772195a(n-27) + 16954690a(n-28) + 883980a(n-29) - 1089264a(n-30) - 11392a(n-31) + 26112a(n-32) - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006

A066083 Number of supersolvable groups of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 4, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 12, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 11, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 42, 2, 5, 1, 5, 1, 15, 2, 12, 2, 2, 1, 11, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 37, 1, 2, 2, 4, 1, 6, 1, 51
Offset: 1

Author

Reiner Martin, Dec 29 2001

Keywords

Comments

A finite group is supersolvable if it has a normal series with cyclic factors. Huppert showed that a finite group is supersolvable iff the index of any maximal subgroup is prime.

Crossrefs

A066085 Orders of non-supersolvable groups.

Original entry on oeis.org

12, 24, 36, 48, 56, 60, 72, 75, 80, 84, 96, 108, 112, 120, 132, 144, 150, 156, 160, 168, 180, 192, 196, 200, 204, 216, 224, 225, 228, 240, 252, 264, 276, 280, 288, 294, 300, 312, 320, 324, 336, 348, 351, 360, 363, 372, 375, 384, 392, 396, 400, 405, 408, 420
Offset: 1

Author

Reiner Martin, Dec 29 2001

Keywords

Comments

A finite group is supersolvable if it has a normal series with cyclic factors. Huppert showed that a finite group is supersolvable iff the index of any maximal subgroup is prime.
All multiples of non-supersolvable orders are non-supersolvable orders. - Des MacHale, Dec 22 2003

Examples

			a(1)=12 is in the sequence since the alternating group on 4 elements is the smallest group which is not supersolvable.
		

Crossrefs

For primitive terms see A340517.

Extensions

More terms from Des MacHale, Dec 22 2003

A066113 a(n) is the number of conjugacy classes of maximal subgroups of the alternating group A_n.

Original entry on oeis.org

0, 1, 2, 3, 5, 5, 6, 8, 7, 7, 11, 9, 9, 11, 12, 10, 13, 10, 14, 14, 13, 13, 19, 15, 15, 18, 20, 15, 21, 20, 22, 20, 18, 21, 27, 19, 21, 21, 27, 21, 27, 22, 26, 29, 24, 24, 32, 27, 31, 27, 31, 27, 33, 30, 35, 34, 30, 30, 41, 31, 33, 40, 40, 41, 40, 34, 39, 36, 40
Offset: 2

Author

Reiner Martin, Dec 30 2001

Keywords

Crossrefs

Programs

  • GAP
    List([2..50],i->Length(MaximalSubgroupClassReps(AlternatingGroup(i))));

Extensions

More terms from Alexander Hulpke, Feb 19 2002
Terms a(51) and beyond from Andrew Howroyd, Jul 02 2018

A066853 Number of different remainders (or residues) for the Fibonacci numbers (A000045) when divided by n (i.e., the size of the set of F(i) mod n over all i).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 6, 9, 10, 7, 11, 9, 14, 15, 11, 13, 11, 12, 20, 9, 14, 19, 13, 25, 18, 27, 21, 10, 30, 19, 21, 19, 13, 35, 15, 29, 13, 25, 30, 19, 18, 33, 20, 45, 21, 15, 15, 37, 50, 35, 30, 37, 29, 12, 25, 33, 20, 37, 55, 25, 21, 23, 42, 45, 38, 51, 20, 29, 70, 44, 15, 57
Offset: 1

Author

Reiner Martin, Jan 21 2002

Keywords

Comments

The Fibonacci numbers mod n for any n are periodic - see A001175 for period lengths. - Ron Knott, Jan 05 2005
a(n) = number of nonzeros in n-th row of triangle A128924. - Reinhard Zumkeller, Jan 16 2014

Examples

			a(8)=6 since the Fibonacci numbers, 0,1,1,2,3,5,8,13,21,34,55,89,144,... when divided by 8 have remainders 0,1,1,2,3,5,0,5,5,2,7,1 (repeatedly) which only contains the remainders 0,1,2,3,5 and 7, i.e., 6 remainders, so a(8)=6.
a(11)=7 since Fibonacci numbers reduced modulo 11 are {0, 1, 2, 3, 5, 8, 10}.
		

Crossrefs

Programs

  • Haskell
    a066853 1 = 1
    a066853 n = f 1 ps [] where
       f 0 (1 : xs) ys = length ys
       f _ (x : xs) ys = if x `elem` ys then f x xs ys else f x xs (x:ys)
       ps = 1 : 1 : zipWith (\u v -> (u + v) `mod` n) (tail ps) ps
    -- Reinhard Zumkeller, Jan 16 2014
    
  • Mathematica
    a[n_] := Module[{v = {1, 2}}, If[n<8, n, While[v[[-1]] != 1 || v[[-2]] != 0, AppendTo[v, Mod[v[[-1]] + v[[-2]], n]]]; v // Union // Length]]; Array[a, 100] (* Jean-François Alcover, Feb 15 2018, after Charles R Greathouse IV *)
  • PARI
    a(n)=if(n<8, return(n)); my(v=List([1,2])); while(v[#v]!=1 || v[#v-1]!=0, listput(v, (v[#v]+v[#v-1])%n)); #Set(v) \\ Charles R Greathouse IV, Jun 19 2017