A337015 Number of distinct transitive subgroups of S_n, counting conjugates as distinct.
1, 1, 2, 9, 20, 279, 512, 19087, 71602, 636365, 1517042, 321965982, 240609602, 8809543877, 144729615032, 26818608209252, 6603755558402, 2737593592637477
Offset: 1
Examples
For n = 4 the following 9 subgroups of S_4 are transitive: Group( [ (1,4)(2,3), (1,3)(2,4) ] ) Group( [ (1,3,2,4), (1,2)(3,4) ] ) Group( [ (1,4,3,2), (1,3)(2,4) ] ) Group( [ (1,2,4,3), (1,4)(2,3) ] ) Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] ) Group( [ (1,2)(3,4), (1,3)(2,4), (1,4) ] ) Group( [ (1,2)(3,4), (1,4)(2,3), (2,4) ] ) Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] ) Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )
Links
- John Erickson, COUNTING TRANSITIVE SUBGROUPS OF Sn
- L. Pyber, Enumerating Finite Groups of Given Order, Ann. Math. 137 (1993), 203-220.
Programs
-
GAP
NrTransSubSn:=function(n) local s,cnt,i,u,no; s:=SymmetricGroup(n); cnt:=0; for i in [1..NrTransitiveGroups(n)] do u:=TransitiveGroup(n,i); no:=Normalizer(s,u); cnt:=cnt+IndexNC(s,no); Print("Class ",i,", found ",IndexNC(s,no)," new, total: ",cnt,"\n"); od; return cnt; end; # Alexander Hulpke
Comments