A342448 Partial sums of A066194.
1, 3, 7, 10, 18, 25, 30, 36, 52, 67, 80, 94, 103, 113, 125, 136, 168, 199, 228, 258, 283, 309, 337, 364, 381, 399, 419, 438, 462, 485, 506, 528, 592, 655, 716, 778, 835, 893, 953, 1012, 1061, 1111, 1163, 1214, 1270, 1325, 1378, 1432, 1465, 1499, 1535, 1570
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..16384
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, n, Bits[Xor](n, b(iquo(n, 2)))) end: a:= proc(n) a(n):= 1+`if`(n<2, 0, a(n-1)+b(n-1)) end: seq(a(n), n=1..60); # Alois P. Heinz, Mar 14 2021
-
Mathematica
a[1]=1; a[n_/;EvenQ[n]]:= a[n] = 4a[n/2] - n/2; a[n_/;OddQ[n]]:= a[n] = 2a[(n - 1)/2]+2a[(n + 1)/2]-(n-1)/2 - ThueMorse[n]; (* Second program: *) b[n_] := If[n==0, 0, BitXor@@Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}]]; A066194 = Table[b[n]+1, {n, 0, 60}]; A066194 // Accumulate (* Jean-François Alcover, Sep 10 2022 *)
Formula
a(n) = A268836(n)/2 + n. - Kevin Ryde, Mar 12 2021
a(1) = 1; a(n) = [n == 0 (mod 2)]*(4*a(n/2) - n/2) + [n == 1 (mod 2)]*(2*a((n - 1)/2)+2*a((n + 1)/2)-(n-1)/2 - A010060(n)) where [] is an Iverson bracket
Comments