A063443
Number of ways to tile an n X n square with 1 X 1 and 2 X 2 tiles.
Original entry on oeis.org
1, 1, 2, 5, 35, 314, 6427, 202841, 12727570, 1355115601, 269718819131, 94707789944544, 60711713670028729, 69645620389200894313, 144633664064386054815370, 540156683236043677756331721, 3641548665525780178990584908643, 44222017282082621251230960522832336
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343
- Andrew Woods and Vaclav Kotesovec and Johan Nilsson, Table of n, a(n) for n = 0..40 (terms 0..21 from Andrew Woods, terms 22..24 from Vaclav Kotesovec and terms 25..40 from Johan Nilsson)
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 68-69.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.1.
- J. Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Vertex Cover
-
Needs["LinearAlgebra`MatrixManipulation`"] Remove[mat] step[sa[rules1_, {dim1_, dim1_}], sa[rules2_, {dim2_, dim2_}]] := sa[Join[rules2, rules1 /. {x_Integer, y_Integer} -> {x + dim2, y}, rules1 /. {x_Integer, y_Integer} -> {x, y + dim2}], {dim1 + dim2, dim1 + dim2}] mat[0] = sa[{{1, 1} -> 1}, {1, 1}]; mat[1] = sa[{{1, 1} -> 1, {1, 2} -> 1, {2, 1} -> 1}, {2, 2}]; mat[n_] := mat[n] = step[mat[n - 2], mat[n - 1]]; A[n_] := mat[n] /. sa -> SparseArray; F[n_] := MatrixPower[A[n], n + 1][[1, 1]]; (* Mark McClure (mcmcclur(AT)bulldog.unca.edu), Mar 19 2006 *)
$RecursionLimit = 1000; Clear[a, b]; b[n_, l_List] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 2}]], 0]]]]; a[n_] := a[n] = If[n<2, 1, b[n, Table[0, {n}]]]; Table[Print[a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)
2 more terms from Keith Schneider (kschneid(AT)bulldog.unca.edu), Mar 19 2006
A245013
Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and 2 X 2 squares; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 21, 35, 21, 13, 1, 1, 1, 1, 21, 43, 93, 93, 43, 21, 1, 1, 1, 1, 34, 85, 269, 314, 269, 85, 34, 1, 1, 1, 1, 55, 171, 747, 1213, 1213, 747, 171, 55, 1, 1
Offset: 0
A(3,3) = 5:
._._._. .___._. ._.___. ._._._. ._._._.
|_|_|_| | |_| |_| | |_|_|_| |_|_|_|
|_|_|_| |___|_| |_|___| |_| | | |_|
|_|_|_| |_|_|_| |_|_|_| |_|___| |___|_| .
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, ...
1, 1, 3, 5, 11, 21, 43, 85, ...
1, 1, 5, 11, 35, 93, 269, 747, ...
1, 1, 8, 21, 93, 314, 1213, 4375, ...
1, 1, 13, 43, 269, 1213, 6427, 31387, ...
1, 1, 21, 85, 747, 4375, 31387, 202841, ...
- Liang Kai, Antidiagonals n = 0..80, flattened (antidiagonals n = 0..45 from Alois P. Heinz)
- Kai Liang, Independent Set Enumeration in King Graphs by Tensor Network Contractions, arXiv:2505.12776 [math.CO], 2025. See p. 4.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016.
- Johan Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
Columns (or rows) k=0+1,2-10 give:
A000012,
A000045(n+1),
A001045(n+1),
A054854,
A054855,
A063650,
A063651,
A063652,
A063653,
A063654.
-
b:= proc(n, l) option remember; local m, k; m:= min(l[]);
if m>0 then b(n-m, map(x->x-m, l))
elif n=0 then 1
else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
`if`(n>1 and k `if`(min(n, k)<2, 1, b(max(n, k), [0$min(n, k)])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 2}]], 0]]]]; A[n_, k_] := If[Min[n, k]<2, 1, b[Max[n, k], Table[0, {Min[n, k]}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)
A063654
Number of ways to tile a 10 X n rectangle with 1 X 1 and 2 X 2 tiles.
Original entry on oeis.org
1, 1, 89, 683, 16717, 221799, 4005785, 61643709, 1029574631, 16484061769, 269718819131, 4364059061933, 71019435701025, 1152314664726905, 18725412666911121, 304052089851133193, 4939032362569285343
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (11, 195, -1459, -10427, 79002, 188873, -1922453, -522744, 21726132, -11085988, -137059276, 114023550, 533938164, -503739499, -1345858084, 1272444796, 2223076291, -1997887777, -2382027317, 2015253425, 1613022647, -1309632545, -660948344, 533727589, 152685069, -128889883, -17772195, 16954690, 883980, -1089264, -11392, 26112).
A063652
Number of ways to tile an 8 X n rectangle with 1 X 1 and 2 X 2 tiles.
Original entry on oeis.org
1, 1, 34, 171, 2115, 16334, 159651, 1382259, 12727570, 113555791, 1029574631, 9258357134, 83605623809, 753361554685, 6795928721858, 61270295494859, 552555688390363, 4982395765808506, 44929655655496287, 405145692220245539, 3653405881837027898
Offset: 0
- S. Butler and S. Osborne, Counting tilings by taking walks, 2012. - From _N. J. A. Sloane_, Dec 27 2012
- R. J. Mathar, Tiling nXm rectangles with 1X1 and sXs squares, arXiv:1609.03964 (2016) Section 4.1
- Index entries for linear recurrences with constant coefficients, signature (6, 50, -171, -514, 1800, 845, -5430, 704, 6175, -1762, -2810, 870, 392, -120).
A063653
Number of ways to tile a 9 X n rectangle with 1 X 1 and 2 X 2 tiles.
Original entry on oeis.org
1, 1, 55, 341, 5933, 59925, 795611, 9167119, 113555791, 1355115601, 16484061769, 198549329897, 2403674442213, 29023432116879, 350917980468767, 4239961392742933, 51247532773412135, 619304595300705203, 7484739788762129061, 90454037365096154821
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (6, 110, -262, -2786, 5916, 25168, -53907, -95299, 197820, 193866, -340168, -228528, 279636, 137864, -108909, -33736, 20214, 2460, -1296).
Subscripts in formula repaired by
Ron Hardin, Dec 29 2010
A063651
Number of ways to tile a 7 X n rectangle with 1 X 1 and 2 X 2 tiles.
Original entry on oeis.org
1, 1, 21, 85, 747, 4375, 31387, 202841, 1382259, 9167119, 61643709, 411595537, 2758179839, 18448963469, 123518353059, 826573277157, 5532716266089, 37028886137273, 247839719105625, 1658772577825883, 11102227136885119
Offset: 0
A179618
T(n,k) = Half the number of (n+1) X (k+1) 0..2 arrays with every 2 X 2 subblock diagonal sum differing from its antidiagonal sum by more than 2.
Original entry on oeis.org
5, 11, 11, 21, 35, 21, 43, 93, 93, 43, 85, 269, 314, 269, 85, 171, 747, 1213, 1213, 747, 171, 341, 2115, 4375, 6427, 4375, 2115, 341, 683, 5933, 16334, 31387, 31387, 16334, 5933, 683, 1365, 16717, 59925, 159651, 202841, 159651, 59925, 16717, 1365, 2731
Offset: 1
Table starts
5 11 21 43 85 171 341
11 35 93 269 747 2115 5933
21 93 314 1213 4375 16334 59925
43 269 1213 6427 31387 159651 795611
85 747 4375 31387 202841 1382259 9167119
171 2115 16334 159651 1382259 12727570 113555791
341 5933 59925 795611 9167119 113555791 1355115601
683 16717 221799 4005785 61643709 1029574631 16484061769
1365 47003 817280 20064827 411595537 9258357134 198549329897
2731 132291 3018301 100764343 2758179839 83605623809 2403674442213
Some solutions for 6 X 6:
0 2 0 2 0 2 0 1 0 2 1 2 0 2 0 2 0 2 0 1 0 2 0 1
2 0 2 0 2 1 2 0 2 0 2 0 2 0 1 0 1 0 2 0 2 0 2 0
0 2 0 2 0 2 1 2 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
2 0 2 0 2 1 2 0 2 0 1 0 1 0 2 0 2 0 1 0 2 0 2 0
0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2
1 0 1 0 1 0 2 1 2 1 2 0 2 1 2 1 2 1 2 0 2 0 2 0
Showing 1-7 of 7 results.
Comments