cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Johan Nilsson

Johan Nilsson's wiki page.

Johan Nilsson has authored 5 sequences.

A375874 Number of distinct n X n patterns in the squiral tiling.

Original entry on oeis.org

1, 2, 14, 70, 126, 270, 438, 630, 790, 958, 1134, 1542, 1974, 2430, 2910, 3414, 3942, 4494, 5070, 5670, 6142, 6622, 7110, 7606, 8110, 8622, 9142, 9670, 10206, 11406, 12630, 13878, 15150, 16446, 17766, 19110, 20478, 21870, 23286, 24726, 26190, 27678, 29190
Offset: 0

Author

Johan Nilsson, Sep 01 2024

Keywords

Comments

The squiral tiling, can be obtained as the limit pattern under the binary block substitution 0 -> [[1,0,1],[0,0,0][1,0,1]] and 1 -> [[0,1,0],[1,1,1][0,1,0]], when starting with the seed 0.

Examples

			a(1) = 2, since there are 2 different 1X1 patterns in the squiral tiling; namely 0 and 1.
a(2) = 14, since there are 14 different 2X2 patterns in the squiral tiling; namely all 16 2X2 binary matrices except [[0,0],[0,0]] and [[1,1],[1,1]].
		

References

  • M. Baake, and U. Grimm, Aperiodic Order. Volume 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications No. 149 Cambridge University Press, Cambridge (2013).
  • B. Grünbaum and F. C. Shephard, Tilings and Patterns, W.H. Freeman 1987, MR0857454.

Programs

  • Maple
    a:= n-> `if`(n<3, [1, 2, 14][n+1], ((A, B)-> (4+8*A-8*B)*(n-1)^2+
        (12*3^A+24*3^B)*(n-1)-18*9^A)(ilog[3](n-2), ilog[3]((n-2)/2))):
    seq(a(n), n=0..42);  # Alois P. Heinz, Sep 18 2024
  • Mathematica
    a[n_] := If[n<3, {1, 2, 14}[[n+1]], With[{A = Floor@ Log[3, n-2], B = Floor@ Log[3, (n-2)/2]}, (4+8*A-8*B)*(n-1)^2+(12*3^A+24*3^B)*(n-1)-18*9^A]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 27 2025, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<4, [1,2,14,70][n+1], my(A=logint(n-2,3), B=logint((n-2)\2,3)); (4 + 8*A - 8*B)*(n - 1)^2 + (12 * 3^A + 24 * 3^B) * (n - 1) - 18 * 9^A) \\ Andrew Howroyd, Sep 18 2024
    
  • Python
    from sympy import integer_log
    def A375874(n):
        if n<4: return (1,2,14,70)[n]
        a, b = integer_log(n-2,3)[0]+1, integer_log((n>>1)-1,3)[0]+1
        return (n-1)*((1+(a-b<<1))*(n-1)+((c:=3**a)+(3**b<<1))<<1)-c**2<<1 # Chai Wah Wu, Sep 18 2024

Formula

a(n) = (4 + 8*A - 8*B)*(n - 1)^2 + (12 * 3^A + 24 * 3^B) * (n - 1) - 18 * 9^A, for n>=4 where A = floor(log3(n-2)), B = floor(log3((n-2)/2)), and log3 is the logarithm in base 3.
For n>=2;
a(3*n-2) = 9*a(n),
a(9*n-7) = 5*a(3*n+1) - 16*a(3*n) + 20*a(3*n-1),
a(9*n-4) = - a(3*n+1) + 5*a(3*n) + 5*a(3*n-1),
a(9*n-1) = 2*a(3*n+1) + 8*a(3*n) - a(3*n-1),
a(3*n) = a(3*n-1) + 3*a(n+1) - 3*a(n).

A271081 Number of ways to tile an n X n X n cube with 1 X 1 X 1 and 2 X 2 X 2 tiles.

Original entry on oeis.org

1, 2, 9, 2089, 3144692, 2748613397101, 107008949868167431857
Offset: 1

Author

Johan Nilsson, Mar 30 2016

Keywords

Examples

			There are 9 ways to tile a cube of side length 3 with cubes of side length 1 and 2, so a(3) = 9.
		

Crossrefs

Cf. A063443 (a 2D version of this tiling count).

A257555 Number of distinct ways to dissect a cube into n rectangular boxes of equal volume, up to reflection and rotation.

Original entry on oeis.org

1, 1, 2, 8, 35, 198
Offset: 1

Author

Johan Nilsson, Apr 29 2015

Keywords

Comments

The boxes may have different shapes, as long as they all have the same volume and right angle corners.

Examples

			There are eight ways to dissect a cube into four boxes of equal volume, so a(4)=8.
		

Crossrefs

Cf. A108066 is a 2D version of the dissection count.

A195206 Number of 1s in the first 10^n entries of the Kolakoski sequence, A000002.

Original entry on oeis.org

1, 5, 49, 502, 4996, 49972, 499986, 5000046, 50000675, 500001223, 4999997671, 50000001587, 500000050701, 5000000008159, 50000000316237, 500000000977421, 4999999994637728, 49999999977479348, 499999999944465105, 4999999999725703450, 49999999999090850760
Offset: 0

Author

Johan Nilsson, Sep 13 2011

Keywords

Examples

			The first entries of the Kolakoski sequence, A000002, are 1221121221... From this we see that a(0)=1, since the first letter is 1, and a(1)=5 since among the first 10 letters 5 of them are 1s.
		

Crossrefs

Cf. A000002.

Extensions

a(14) from Ed Wynn, Jun 24 2014
a(15)-a(19) from Richard P. Brent, Jul 02 2017
a(20) from Richard P. Brent, Mar 01 2018

A195211 Number of 2s in the first 10^n entries of the generalized Kolakoski-(2,3) sequence A071820.

Original entry on oeis.org

1, 5, 51, 502, 4995, 49999, 499980, 4999995, 50000202, 499999731, 5000005565, 50000013114, 499999997503, 4999999971938, 49999999974390, 499999999976909, 4999999999414101, 50000000022964476, 500000000029433861, 4999999999986496894
Offset: 0

Author

Johan Nilsson, Sep 13 2011

Keywords

Examples

			The first entries of the Kolakoski-(2,3) sequence, A071820, are 2233222333... From this we see that a(0)=1, since the first letter is 2, and a(1) = 5 since among the first 10 letters 5 of them are 2s.
		

Crossrefs

Programs

Extensions

a(13)-a(14) from Ed Wynn, Jun 24 2014
a(15)-a(19) from Hiroaki Yamanouchi, Jul 25 2017