Andrew Woods has authored 26 sequences. Here are the ten most recent ones:
A288348
Spherical growth function of the Lamplighter group L_2 with respect to the standard generators a, t.
Original entry on oeis.org
1, 3, 6, 12, 22, 40, 71, 123, 212, 360, 607, 1017, 1693, 2807, 4635, 7629, 12524, 20512, 33532, 54728, 89201, 145223, 236200, 383858, 623393, 1011813, 1641441, 2661767, 4314821, 6992417, 11328796, 18350552, 29719248, 48124026, 77916923, 126140917, 204193454
Offset: 0
Writing L and R for t and t^{-1}, there are 12 elements of the group which can be written as words of length 3, but not more briefly: LLL, LLa, LaL, LaR, aLL, aLa, aRa, aRR, RaL, RaR, RRa, and RRR.
- Walter Parry, Growth series of some wreath products, Trans. Amer. Math. Soc., Vol. 331 (1992), No. 2, 751-759.
- Index entries for linear recurrences with constant coefficients, signature (1, 3, 0, -5, -3, 2, 3, 1).
A249665
The number of permutations p of {1,...,n} such that p(1)=1, p(n)=n, and |p(i)-p(i+1)| is in {1,2,3} for all i from 1 to n-1.
Original entry on oeis.org
1, 1, 1, 2, 6, 14, 28, 56, 118, 254, 541, 1140, 2401, 5074, 10738, 22711, 48001, 101447, 214446, 453355, 958395, 2025963, 4282685, 9053286, 19138115, 40456779, 85522862, 180789396, 382176531, 807895636, 1707837203, 3610252689, 7631830480
Offset: 1
For n = 5, the a(5) = 6 solutions are 123456, 132456, 134256, 135246, 142356, and 143256.
- G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..250 from Andrew Woods).
- Maria M. Gillespie, Kenneth G. Monks, and Kenneth M. Monks, Enumerating Anchored Permutations with Bounded Gaps, arXiv:1808.03573 [math.CO], 2018. Also Discrete Math.,343 (2020), #111957. (Proves the formulas and conjectures.)
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,1,1,0,-1,-1).
-
R:=PowerSeriesRing(Integers(), 41);
Coefficients(R!( x*(1-x-x^3)/(1-2*x+x^2-2*x^3-x^4-x^5+x^7+x^8) )); // G. C. Greubel, Sep 23 2024
-
(1-x-x^3)/(1 -2x +x^2 -2x^3 -x^4-x^5+x^7+x^8) + O[x]^33 // CoefficientList[#, x]& (* Jean-François Alcover, Sep 23 2018, after Colin Barker *)
-
Vec(x*(1 - x - x^3) / (1 - 2*x + x^2 - 2*x^3 - x^4 - x^5 + x^7 + x^8) + O(x^40)) \\ Colin Barker, Aug 13 2018
-
def A249665_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x-x^3)/(1-2*x+x^2-2*x^3-x^4-x^5+x^7+x^8) ).list()
a=A249665_list(41); a[1:] # G. C. Greubel, Sep 23 2024
A249019
Number of ternary words of length n in which all digits 0..2 occur in every 6 consecutive digits.
Original entry on oeis.org
1, 3, 9, 27, 81, 243, 540, 1440, 3804, 9960, 25908, 67344, 175884, 458832, 1196364, 3119304, 8134164, 21212832, 55316892, 144249168, 376159644, 980918904, 2557958964, 6670420704, 17394543180, 45359994336, 118285895244, 308455762488, 804364332180, 2097551985168, 5469815336796, 14263713072192
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,3,5,6,-1,-1,0,-1,-1).
-
LinearRecurrence[{1,2,3,5,6,-1,-1,0,-1,-1},{1,3,9,27,81,243,540,1440,3804,9960,25908,67344,175884,458832,1196364,3119304},40] (* Harvey P. Dale, Feb 05 2019 *)
-
Vec(-12*x^6*(20*x^9 +27*x^8 +9*x^7 +23*x^6 +28*x^5 -110*x^4 -138*x^3 -107*x^2 -75*x -45) / (x^10 +x^9 +x^7 +x^6 -6*x^5 -5*x^4 -3*x^3 -2*x^2 -x +1) + O(x^100)) \\ Colin Barker, Jan 12 2015
A248960
Number of ternary words of length n in which all digits 0..2 occur in every 5 consecutive digits.
Original entry on oeis.org
1, 3, 9, 27, 81, 150, 366, 870, 2022, 4686, 10974, 25614, 59742, 139398, 325350, 759198, 1771590, 4134126, 9647262, 22512342, 52533750, 122590422, 286071414, 667563054, 1557794622, 3635198310, 8482932318, 19795382454, 46193598486, 107795266974, 251546100558, 586996465758, 1369788083022
Offset: 0
-
Join[{1,3,9,27,81},LinearRecurrence[{1,2,2,2,-1,-1},{150,366,870,2022,4686,10974},30]] (* Harvey P. Dale, Apr 04 2015 *)
-
Vec((1+2*x+4*x^2+10*x^3+28*x^4-8*x^5-14*x^6-6*x^8+3*x^10)/((1+x)*(1-2*x-2*x^3+x^5)) + O(x^30)) \\ Colin Barker, Oct 27 2016
A248959
Number of ternary words of length n in which all digits 0..2 occur in every subword of 4 consecutive digits.
Original entry on oeis.org
1, 3, 9, 27, 36, 72, 132, 240, 444, 816, 1500, 2760, 5076, 9336, 17172, 31584, 58092, 106848, 196524, 361464, 664836, 1222824, 2249124, 4136784, 7608732, 13994640, 25740156, 47343528, 87078324, 160162008, 294583860, 541824192, 996570060, 1832978112
Offset: 0
-
Join[{1,3,9,27},LinearRecurrence[{1,1,1},{36,72,132},30]] (* Harvey P. Dale, Mar 12 2015 *)
-
Vec((1+2*x+5*x^2+14*x^3-3*x^4-3*x^6)/(1-x-x^2-x^3) + O(x^100)) \\ Colin Barker, Jan 12 2015; extended to indices 0..3 by M. F. Hasler, Jan 13 2015
A253409
The number of ways to write an n-bit binary string and then define each run of ones as an element in an equivalence relation, and each run of zeros as an element in a second equivalence relation.
Original entry on oeis.org
1, 2, 4, 10, 28, 86, 282, 984, 3630, 14138, 57904, 248854, 1118554, 5246980, 25619018, 129961850, 683561488, 3722029314, 20946195078, 121671375312, 728511702462, 4491224518274, 28475638336144, 185499720543262, 1240358846060122, 8505894459387628, 59771243719783410
Offset: 0
For n = 3, taking 3-bit binary strings and replacing zeros with ABC... and ones with 123... to represent equivalence relations, we have a(3) = 10 labeled-run binary strings: AAA, AA1, A1A, A1B, 1AA, A11, 11A, 111, 1A1, 1A2.
-
Table[2 * Sum[Binomial[n-1,2k-1] * BellB[k]^2 + Binomial[n-1,2k-2] * BellB[k] * BellB[k-1],{k,1,Ceiling[n/2]}],{n,1,30}] (* Vaclav Kotesovec, Jan 08 2015 after Andrew Woods *)
A253511
Number of n-bit binary strings in which the length of any run of ones is a power of two.
Original entry on oeis.org
1, 2, 4, 7, 14, 26, 49, 93, 176, 333, 630, 1192, 2255, 4267, 8073, 15274, 28900, 54679, 103455, 195741, 370348, 700713, 1325774, 2508412, 4746007, 8979617, 16989761, 32145244, 60819967, 115073582, 217723390, 411940547, 779406450, 1474665262, 2790120139
Offset: 0
For n = 4, the a(4) = 14 solutions are 0000, 0001, 0010, 0100, 1000, 0101, 1001, 1010, 0011, 0110, 1100, 1011, 1101, and 1111.
-
a:= proc(n) option remember; `if`(n<1, 1,
a(n-1) +add(a(n-1-2^k), k=0..ilog2(n)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 03 2015
-
terms = 35; h[x_] = Sum[x^2^k, {k, 0, Log[2, terms] // Floor}];
CoefficientList[(1 + h[x])/(1 - x - x h[x]) + O[x]^terms, x] (* Jean-François Alcover, Mar 22 2019, after Robert Israel *)
A247100
The number of ways to write an n-bit binary string and then define each run of ones as an element in an equivalence relation.
Original entry on oeis.org
1, 2, 4, 9, 21, 51, 127, 324, 844, 2243, 6073, 16737, 46905, 133556, 386062, 1132107, 3365627, 10137559, 30920943, 95457178, 298128278, 941574417, 3006040523, 9697677885, 31602993021, 104001763258, 345524136076, 1158570129917, 3919771027105, 13377907523151
Offset: 0
The labeled-run binary strings can be written as follows.
For n=1: 0, 1.
For n=2: 00, 01, 10, 11.
For n=3: 000, 001, 010, 100, 011, 110, 111, 101, 102.
For n=4: 0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100, 0111, 1110, 1111, 0101, 0102, 1001, 1002, 1010, 1020, 1011, 1022, 1101, 1102.
For n=5, the original binary string 10101 can be written as 10101, 10102, 10201, 10202, or 10203 because there are 3 runs of ones and Bell(3)=5.
-
with(combinat):
a:= n-> (t-> add(binomial(t, 2*j)*bell(j), j=0..t/2))(n+1):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 10 2015
-
Table[1 + Sum[Binomial[n+1,2*k] * BellB[k],{k,1,Ceiling[n/2]}],{n,1,40}] (* Vaclav Kotesovec, Jan 08 2015 after Andrew Woods *)
A253207
a(n) = number of permutations of (1,2,...,n) producible by an ordered quadruple of distinct transpositions.
Original entry on oeis.org
11, 59, 359, 1799, 7091, 22995, 64143, 159093, 359348, 752180, 1478204, 2754752, 4906202, 8402522, 13907394, 22337388, 34933761, 53348561, 79746821, 116926733, 168459797, 238853045, 333735545, 460071495, 626402322, 843120306, 1122776354
Offset: 4
- Colin Barker, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
A253171
a(n) = number of permutations of (1,2,...,n) producible by an ordered triple of distinct transpositions.
Original entry on oeis.org
3, 12, 60, 240, 756, 1988, 4572, 9495, 18205, 32736, 55848, 91182, 143430, 218520, 323816, 468333, 662967, 920740, 1257060, 1689996, 2240568, 2933052, 3795300, 4859075, 6160401, 7739928, 9643312, 11921610, 14631690, 17836656, 21606288, 26017497, 31154795
Offset: 3
For n=4, the 12 permutations are 0132, 0213, 0321, 1023, 1230, 1302, 2031, 2103, 2310, 3012, 3120, and 3201. For example, 0123 is permuted into 0132 by ((b,d),(c,d), (b,c)).
Cf.
A000914, for two transpositions.
Comments