cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A249019 Number of ternary words of length n in which all digits 0..2 occur in every 6 consecutive digits.

Original entry on oeis.org

1, 3, 9, 27, 81, 243, 540, 1440, 3804, 9960, 25908, 67344, 175884, 458832, 1196364, 3119304, 8134164, 21212832, 55316892, 144249168, 376159644, 980918904, 2557958964, 6670420704, 17394543180, 45359994336, 118285895244, 308455762488, 804364332180, 2097551985168, 5469815336796, 14263713072192
Offset: 0

Views

Author

Andrew Woods, Jan 12 2015

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,2,3,5,6,-1,-1,0,-1,-1},{1,3,9,27,81,243,540,1440,3804,9960,25908,67344,175884,458832,1196364,3119304},40] (* Harvey P. Dale, Feb 05 2019 *)
  • PARI
    Vec(-12*x^6*(20*x^9 +27*x^8 +9*x^7 +23*x^6 +28*x^5 -110*x^4 -138*x^3 -107*x^2 -75*x -45) / (x^10 +x^9 +x^7 +x^6 -6*x^5 -5*x^4 -3*x^3 -2*x^2 -x +1) + O(x^100)) \\ Colin Barker, Jan 12 2015

Formula

a(n) = a(n-1) + 2*a(n-2) + 3*a(n-3) + 5*a(n-4) + 6*a(n-5) - a(n-6) - a(n-7) - a(n-9) - a(n-10), for n>=16.
G.f.: (1 + 2*x + 4*x^2 + 9*x^3 + 22*x^4 + 60*x^5 - 8*x^6 - 14*x^7 - 8*x^9 - 26*x^10 + 3*x^12 + 3*x^15)/(1 - x - 2*x^2 - 3*x^3 - 5* x^4 - 6*x^5 + x^6 + x^7 + x^9 + x^10). - Colin Barker, Jan 12 2015
Showing 1-1 of 1 results.