cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A261041 Number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in different parts.

Original entry on oeis.org

1, 2, 4, 10, 29, 97, 366, 1534, 7050, 35167, 188835, 1084180, 6618472, 42756208, 291120551, 2081922515, 15590248868, 121920095674, 993343650912, 8414029179365, 73953763887277, 673316834487162, 6340176007793060, 61657373569634586, 618445940056365121
Offset: 0

Views

Author

Alois P. Heinz, Aug 09 2015

Keywords

Comments

From Gus Wiseman, Nov 25 2019: (Start)
Conjecture: Also the number of set partitions of {1, ..., n + 1} where, if x and x + 2 belong to the same block, then so does x + 1. For example, the a(0) = 1 through a(3) = 10 set partitions are:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{2}} {{1},{2,3}} {{1},{2,3,4}}
{{1,2},{3}} {{1,2},{3,4}}
{{1},{2},{3}} {{1,2,3},{4}}
{{1,4},{2,3}}
{{1},{2},{3,4}}
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1,4},{2},{3}}
{{1},{2},{3},{4}}
(End)

Examples

			For n=3 the a(3) = 10 partitions are {}, 1, 2, 3, 1|2, 13, 1|3, 2|3, 13|2, 1|2|3.
From _Gus Wiseman_, Nov 25 2019: (Start)
The a(0) = 1 through a(3) = 10 set partitions:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{2}}      {{2}}
             {{1},{2}}  {{3}}
                        {{1,3}}
                        {{1},{2}}
                        {{1},{3}}
                        {{2},{3}}
                        {{1,3},{2}}
                        {{1},{2},{3}}
(End)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, l, t) option remember; `if`(n=0, 1, add(`if`(l>0
          and j=l, 0, g(n-1, j, `if`(j=t, t+1, t))), j=0..t))
        end:
    a:= n-> g(n, 0, 1):
    seq(a(n), n=0..30);
  • Mathematica
    g[n_, l_, t_] := g[n, l, t] = If[n==0, 1, Sum[If[l>0 && j==l, 0, g[n-1, j, If[j==t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, 0, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 04 2017, translated from Maple *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Join@@sps/@Subsets[Range[n]],!MemberQ[#,{_,x_,y_,_}/;x+1==y]&]],{n,0,6}] (* Gus Wiseman, Nov 25 2019 *)
  • PARI
    a261041(n) = sum(k=0,n, sum(j=0,k,stirling(k,j,2)) * sum(j=0,(n-k)\2, binomial(k+j-1,j))); \\ Max Alekseyev, Sep 08 2024

Formula

From Max Alekseyev, Sep 08 2024: (Start)
a(n) = Sum_{k=0..n} A000110(k) * Sum_{j=0..[(n-k)/2]} binomial(k+j-1,j).
G.f.: 1/(1-x) * Sum_{k>=0} A000110(k) * (x/(1-x^2))^k. (End)

A261134 Number of partitions of subsets s of {1,...,n}, where all integers belonging to a run of consecutive members of s are required to be in different parts.

Original entry on oeis.org

1, 2, 4, 9, 23, 66, 209, 722, 2697, 10825, 46429, 211799, 1023304, 5217048, 27974458, 157310519, 925326848, 5680341820, 36315837763, 241348819913, 1664484383610, 11893800649953, 87931422125632, 671699288516773, 5295185052962371, 43029828113547685
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2015

Keywords

Examples

			a(3) = 9: {}, 1, 2, 3, 1|2, 2|3, 13, 1|3, 1|2|3.
a(4) = 23: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 14, 2|3, 2|4, 24, 3|4, 1|2|3, 1|2|4, 1|24, 14|2, 1|3|4, 13|4, 14|3, 2|3|4, 1|2|3|4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, s, t) option remember; `if`(n=0, 1, add(
          `if`(j in s, 0, g(n-1, `if`(j=0, {}, s union {j}),
          `if`(j=t, t+1, t))), j=0..t))
        end:
    a:= n-> g(n, {}, 1):
    seq(a(n), n=0..20);
  • Mathematica
    g[n_, s_List, t_] := g[n, s, t] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, g[n-1, If[j == 0, {}, s ~Union~ {j}], If[j == t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, {}, 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 04 2017, translated from Maple *)

A261489 Number of partitions of subsets of {1,...,n}, where consecutive integers and the elements in {1, n} are required to be in different parts.

Original entry on oeis.org

1, 2, 4, 8, 25, 82, 313, 1318, 6098, 30603, 165282, 954065, 5853242, 37987146, 259751877, 1864926846, 14016442573, 109985575616, 898948324164, 7637000950875, 67310106587314, 614420757079213, 5799709014601124, 56530981389520624, 568255134674637557
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Examples

			a(3) = 8: {}, 1, 2, 3, 1|2, 1|3, 2|3, 1|2|3.
a(4) = 25: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 2|3, 2|4, 24, 3|4, 1|2|3, 13|2, 1|2|4, 1|24, 1|3|4, 13|4, 2|3|4, 24|3, 1|2|3|4, 13|2|4, 1|3|24, 13|24.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, l, t, f) option remember; `if`(n=0, 1,
          add(`if`(l>0 and j=l or f=1 and n=1 and j=1, 0,
          g(n-1, j, t+`if`(j=t, 1, 0), f)), j=0..t))
        end:
    a:= n-> `if`(n=0, 1, g(n-1, 0, 1, 0)+g(n-1, 1, 2, 1)):
    seq(a(n), n=0..25);
  • Mathematica
    g[n_, l_, t_, f_] := g[n, l, t, f] = If[n==0, 1, Sum[If[l>0 && j==l || f==1 && n==1 && j==1, 0, g[n-1, j, t+If[j==t, 1, 0], f]], {j, 0, t}]]; a[n_] := If[n==0, 1, g[n-1, 0, 1, 0]+g[n-1, 1, 2, 1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)

A261492 Number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in the same part and the elements of {1, n} are required to be in the same part if they are both members of a subset.

Original entry on oeis.org

1, 2, 4, 8, 18, 42, 102, 254, 648, 1688, 4486, 12146, 33474, 93810, 267112, 772124, 2264214, 6731254, 20275118, 61841886, 190914356, 596256556, 1883148834, 6012081046, 19395355770, 63205986042, 208003526516, 691048272152, 2317140259834, 7839542054210
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Examples

			a(3) = 8: {}, 1, 2, 3, 12, 23, 13, 123.
a(4) = 18: {}, 1, 2, 3, 4, 12, 13, 1|3, 14, 23, 24, 2|4, 34, 123, 124, 134, 234, 1234.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> `if`(n=0, 1, 2*add(binomial(n, 2*j)*bell(j), j=0..n/2)):
    seq(a(n), n=0..35);
  • Mathematica
    a[n_] := If[n==0, 1, 2*Sum[Binomial[n, 2*j]*BellB[j], {j, 0, n/2}]]; Table[ a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

a(n) = 2 * Sum_{j=0..floor(n/2)} C(n,2*j) * A000110(j) for n>0, a(0) = 1.

A243634 Number of length n+2 0..n arrays with no three unequal elements in a row and new values 0..n introduced in 0..n order.

Original entry on oeis.org

4, 9, 21, 51, 127, 324, 844, 2243, 6073, 16737, 46905, 133556, 386062, 1132107, 3365627, 10137559, 30920943, 95457178, 298128278, 941574417, 3006040523, 9697677885, 31602993021, 104001763258, 345524136076, 1158570129917
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2014

Keywords

Comments

Diagonal of A243641.

Examples

			Some solutions for n=6
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....1....1....1....1....0....1....0....1....1....0....1....0
..1....0....1....0....1....1....1....1....1....0....0....0....1....1....0....1
..1....1....1....0....2....0....2....1....1....1....1....0....0....0....1....1
..2....1....0....0....1....1....2....1....1....0....1....1....0....0....1....1
..2....2....0....0....1....0....1....2....2....0....1....1....2....1....2....1
..2....1....2....1....3....0....1....2....2....2....1....1....2....1....2....0
..2....1....2....0....3....1....1....1....2....0....0....0....1....0....1....0
		

Crossrefs

Cf. A247100.

A253409 The number of ways to write an n-bit binary string and then define each run of ones as an element in an equivalence relation, and each run of zeros as an element in a second equivalence relation.

Original entry on oeis.org

1, 2, 4, 10, 28, 86, 282, 984, 3630, 14138, 57904, 248854, 1118554, 5246980, 25619018, 129961850, 683561488, 3722029314, 20946195078, 121671375312, 728511702462, 4491224518274, 28475638336144, 185499720543262, 1240358846060122, 8505894459387628, 59771243719783410
Offset: 0

Views

Author

Andrew Woods, Jan 01 2015

Keywords

Comments

Included are the cases in which there are no zeros or no ones, producing an empty relation.

Examples

			For n = 3, taking 3-bit binary strings and replacing zeros with ABC... and ones with 123... to represent equivalence relations, we have a(3) = 10 labeled-run binary strings: AAA, AA1, A1A, A1B, 1AA, A11, 11A, 111, 1A1, 1A2.
		

Crossrefs

Programs

  • Mathematica
    Table[2 * Sum[Binomial[n-1,2k-1] * BellB[k]^2 + Binomial[n-1,2k-2] * BellB[k] * BellB[k-1],{k,1,Ceiling[n/2]}],{n,1,30}] (* Vaclav Kotesovec, Jan 08 2015 after Andrew Woods *)

Formula

a(n) = 2 * Sum_{k=1..ceiling(n/2)} C(n-1,2k-1)*Bell(k)^2 + C(n-1,2k-2)*Bell(k)*Bell(k-1), where C(x,y) refers to binomial coefficients and Bell(x) refers to Bell numbers (A000110).

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 08 2015
Showing 1-6 of 6 results.