cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A261041 Number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in different parts.

Original entry on oeis.org

1, 2, 4, 10, 29, 97, 366, 1534, 7050, 35167, 188835, 1084180, 6618472, 42756208, 291120551, 2081922515, 15590248868, 121920095674, 993343650912, 8414029179365, 73953763887277, 673316834487162, 6340176007793060, 61657373569634586, 618445940056365121
Offset: 0

Views

Author

Alois P. Heinz, Aug 09 2015

Keywords

Comments

From Gus Wiseman, Nov 25 2019: (Start)
Conjecture: Also the number of set partitions of {1, ..., n + 1} where, if x and x + 2 belong to the same block, then so does x + 1. For example, the a(0) = 1 through a(3) = 10 set partitions are:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{2}} {{1},{2,3}} {{1},{2,3,4}}
{{1,2},{3}} {{1,2},{3,4}}
{{1},{2},{3}} {{1,2,3},{4}}
{{1,4},{2,3}}
{{1},{2},{3,4}}
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1,4},{2},{3}}
{{1},{2},{3},{4}}
(End)

Examples

			For n=3 the a(3) = 10 partitions are {}, 1, 2, 3, 1|2, 13, 1|3, 2|3, 13|2, 1|2|3.
From _Gus Wiseman_, Nov 25 2019: (Start)
The a(0) = 1 through a(3) = 10 set partitions:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{2}}      {{2}}
             {{1},{2}}  {{3}}
                        {{1,3}}
                        {{1},{2}}
                        {{1},{3}}
                        {{2},{3}}
                        {{1,3},{2}}
                        {{1},{2},{3}}
(End)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, l, t) option remember; `if`(n=0, 1, add(`if`(l>0
          and j=l, 0, g(n-1, j, `if`(j=t, t+1, t))), j=0..t))
        end:
    a:= n-> g(n, 0, 1):
    seq(a(n), n=0..30);
  • Mathematica
    g[n_, l_, t_] := g[n, l, t] = If[n==0, 1, Sum[If[l>0 && j==l, 0, g[n-1, j, If[j==t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, 0, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 04 2017, translated from Maple *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Join@@sps/@Subsets[Range[n]],!MemberQ[#,{_,x_,y_,_}/;x+1==y]&]],{n,0,6}] (* Gus Wiseman, Nov 25 2019 *)
  • PARI
    a261041(n) = sum(k=0,n, sum(j=0,k,stirling(k,j,2)) * sum(j=0,(n-k)\2, binomial(k+j-1,j))); \\ Max Alekseyev, Sep 08 2024

Formula

From Max Alekseyev, Sep 08 2024: (Start)
a(n) = Sum_{k=0..n} A000110(k) * Sum_{j=0..[(n-k)/2]} binomial(k+j-1,j).
G.f.: 1/(1-x) * Sum_{k>=0} A000110(k) * (x/(1-x^2))^k. (End)

A247100 The number of ways to write an n-bit binary string and then define each run of ones as an element in an equivalence relation.

Original entry on oeis.org

1, 2, 4, 9, 21, 51, 127, 324, 844, 2243, 6073, 16737, 46905, 133556, 386062, 1132107, 3365627, 10137559, 30920943, 95457178, 298128278, 941574417, 3006040523, 9697677885, 31602993021, 104001763258, 345524136076, 1158570129917, 3919771027105, 13377907523151
Offset: 0

Views

Author

Andrew Woods, Jan 01 2015

Keywords

Comments

Also the number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in the same part. Example: For n=3 the a(3)=9 partitions are {}, 1, 2, 3, 12, 23, 13, 1|3, 123. - Don Knuth, Aug 07 2015

Examples

			The labeled-run binary strings can be written as follows.
For n=1: 0, 1.
For n=2: 00, 01, 10, 11.
For n=3: 000, 001, 010, 100, 011, 110, 111, 101, 102.
For n=4: 0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100, 0111, 1110, 1111, 0101, 0102, 1001, 1002, 1010, 1020, 1011, 1022, 1101, 1102.
For n=5, the original binary string 10101 can be written as 10101, 10102, 10201, 10202, or 10203 because there are 3 runs of ones and Bell(3)=5.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> (t-> add(binomial(t, 2*j)*bell(j), j=0..t/2))(n+1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 10 2015
  • Mathematica
    Table[1 + Sum[Binomial[n+1,2*k] * BellB[k],{k,1,Ceiling[n/2]}],{n,1,40}] (* Vaclav Kotesovec, Jan 08 2015 after Andrew Woods *)

Formula

a(n) = 1 + Sum_{k=1..ceiling(n/2)} binomial(n+1, 2k)*Bell(k), where Bell(x) refers to Bell numbers (A000110).

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 08 2015

A261134 Number of partitions of subsets s of {1,...,n}, where all integers belonging to a run of consecutive members of s are required to be in different parts.

Original entry on oeis.org

1, 2, 4, 9, 23, 66, 209, 722, 2697, 10825, 46429, 211799, 1023304, 5217048, 27974458, 157310519, 925326848, 5680341820, 36315837763, 241348819913, 1664484383610, 11893800649953, 87931422125632, 671699288516773, 5295185052962371, 43029828113547685
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2015

Keywords

Examples

			a(3) = 9: {}, 1, 2, 3, 1|2, 2|3, 13, 1|3, 1|2|3.
a(4) = 23: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 14, 2|3, 2|4, 24, 3|4, 1|2|3, 1|2|4, 1|24, 14|2, 1|3|4, 13|4, 14|3, 2|3|4, 1|2|3|4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, s, t) option remember; `if`(n=0, 1, add(
          `if`(j in s, 0, g(n-1, `if`(j=0, {}, s union {j}),
          `if`(j=t, t+1, t))), j=0..t))
        end:
    a:= n-> g(n, {}, 1):
    seq(a(n), n=0..20);
  • Mathematica
    g[n_, s_List, t_] := g[n, s, t] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, g[n-1, If[j == 0, {}, s ~Union~ {j}], If[j == t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, {}, 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 04 2017, translated from Maple *)

A261492 Number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in the same part and the elements of {1, n} are required to be in the same part if they are both members of a subset.

Original entry on oeis.org

1, 2, 4, 8, 18, 42, 102, 254, 648, 1688, 4486, 12146, 33474, 93810, 267112, 772124, 2264214, 6731254, 20275118, 61841886, 190914356, 596256556, 1883148834, 6012081046, 19395355770, 63205986042, 208003526516, 691048272152, 2317140259834, 7839542054210
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Examples

			a(3) = 8: {}, 1, 2, 3, 12, 23, 13, 123.
a(4) = 18: {}, 1, 2, 3, 4, 12, 13, 1|3, 14, 23, 24, 2|4, 34, 123, 124, 134, 234, 1234.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> `if`(n=0, 1, 2*add(binomial(n, 2*j)*bell(j), j=0..n/2)):
    seq(a(n), n=0..35);
  • Mathematica
    a[n_] := If[n==0, 1, 2*Sum[Binomial[n, 2*j]*BellB[j], {j, 0, n/2}]]; Table[ a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

a(n) = 2 * Sum_{j=0..floor(n/2)} C(n,2*j) * A000110(j) for n>0, a(0) = 1.
Showing 1-4 of 4 results.