cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337654 Expansion of H(x)*(1+x^5)/(1-x^2-x^3-x^4) where H(x) = g.f. for A249665.

Original entry on oeis.org

0, 1, 1, 2, 4, 10, 22, 45, 93, 197, 420, 890, 1878, 3964, 8380, 17724, 37474, 79209, 167426, 353927, 748202, 1581668, 3343519, 7067929, 14941121, 31584586, 66767743, 141142461, 298365531, 630724607, 1333309486, 2818526581, 5958175175, 12595180550, 26625362976, 56284223827
Offset: 0

Views

Author

N. J. A. Sloane, Sep 29 2020

Keywords

Crossrefs

Cf. A249665.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    [0] cat Coefficients(R!( x*(1+x^5)/((1+x)*(1-2*x+x^2-2*x^3-x^4-x^5+x^7+x^8)) )); // G. C. Greubel, Sep 23 2024
    
  • Mathematica
    LinearRecurrence[{2,-1,2,1,1,0,-1,-1},{0,1,1,2,4,10,22,45},40] (* Harvey P. Dale, May 04 2023 *)
  • PARI
    concat(0, Vec((x^4-x^3+x^2-x+1)*x/(x^8+x^7-x^5-x^4-2*x^3+x^2-2*x+1)+ O(x^40))) \\ Michel Marcus, Oct 11 2020
    
  • SageMath
    def A337654_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x^5)/((1+x)*(1-2*x+x^2-2*x^3-x^4-x^5+x^7+x^8)) ).list()
    A337654_list(50) # G. C. Greubel, Sep 23 2024

Formula

G.f.: x*(1-x+x^2-x^3+x^4)/(1-2*x+x^2-2*x^3-x^4-x^5+x^7+x^8).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) + a(n-4) + a(n-5) - a(n-7) - a(n-8) for n>7. - Colin Barker, Oct 11 2020
Showing 1-1 of 1 results.