cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A247413 Decimal expansion of the entropy constant related to A063443.

Original entry on oeis.org

1, 3, 4, 2, 6, 4, 3, 9, 5, 1, 1, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 16 2014

Keywords

Examples

			1.342643951124...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343.
  • B. D. McKay, On Calkin and Wilf's limit theorem for grid graphs, unpublished note, 1996.

Crossrefs

Formula

Equals limit n->infinity (A063443(n))^(1/n^2).
Equals limit n->infinity (A212269(n))^(1/n^2).

A045846 Number of distinct ways to cut an n X n square into squares with integer sides.

Original entry on oeis.org

1, 1, 2, 6, 40, 472, 10668, 450924, 35863972, 5353011036, 1500957422222, 790347882174804, 781621363452405930, 1451740730942350766748, 5064070747064013556294032, 33176273260130056822126522884, 408199838581532754602910469192704
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the 6 dissections are: the full 3 X 3 square; 9 1 X 1 squares; one 2 X 2 square and five 1 X 1 squares (in 4 ways).
		

Crossrefs

Diagonal of A219924. - Alois P. Heinz, Dec 01 2012
See A224239 for the number of inequivalent ways.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    a:= n-> b(n, [0$n]):
    seq(a(n), n=0..11);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    $RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, 0, n == 0 || l == {}, 1, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s=0; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {i-k+1}], l[[i+1 ;; Length[l]]]]]]; s]]; a[n_] := b[n, Array[0&, n]]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

It appears lim n->oo a(n)*a(n-3)/(a(n-1)*a(n-2)) = 3.527... - Gerald McGarvey, May 03 2005
It appears that lim n->oo a(n)*a(n-2)/(a(n-1))^2 = 1.8781... - Christopher Hunt Gribble, Jun 21 2013
a(n) = (1/n^2) * Sum_{k=1..n} k^2 * A226936(n,k). - Alois P. Heinz, Jun 22 2013

Extensions

More terms from Hugo van der Sanden, Nov 06 2000
a(14)-a(15) from Alois P. Heinz, Nov 30 2012
a(16) from Steve Butler, Mar 14 2014

A067966 Number of binary arrangements without adjacent 1's on n X n array connected n-s.

Original entry on oeis.org

1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

Central coefficients of triangle A210341.

Examples

			Neighbors for n=4:
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Programs

  • Magma
    [Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
  • Mathematica
    Table[Fibonacci[n+2]^n, {n, 0, 100}]
  • Maxima
    makelist(fib(n+2)^n, n, 0, 14);
    
  • PARI
    a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
    

Formula

a(n) = F(n+2)^n, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) ~ phi^2/sqrt(5) phi^n^2. [Charles R Greathouse IV, Mar 28 2012]

Extensions

Edited by Dean Hickerson, Feb 15 2002

A067961 Number of binary arrangements without adjacent 1's on n X n torus connected n-s.

Original entry on oeis.org

1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4:
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A156216. - Paul D. Hanna, Sep 13 2010
Cf. A215941.

Programs

  • Magma
    [Lucas(n)^n: n in [1..15]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]^n:
    seq(a(n), n=1..15);  # Alois P. Heinz, Aug 01 2021
  • Mathematica
    Table[LucasL[n]^n,{n,15}] (* Harvey P. Dale, Mar 13 2014 *)

Formula

a(n) = L(n)^n, where L(n) = A000032(n) is the n-th Lucas number.
Logarithmic derivative of A156216. - Paul D. Hanna, Sep 13 2010
Sum_{n>=1} 1/a(n) = A215941. - Amiram Eldar, Nov 17 2020

Extensions

Edited by Dean Hickerson, Feb 15 2002

A067965 Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.

Original entry on oeis.org

2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
		

Crossrefs

Main diagonal of A181212.
Cf. circle A000204, line A000045, arrays: e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

Term a(14) from Vaclav Kotesovec, Dec 06 2011
Term a(15) from Vaclav Kotesovec, Jan 03 2012
Term a(16) from Vaclav Kotesovec, May 01 2012
Term a(17)-a(18) from Vaclav Kotesovec, Aug 13 2016

A193580 Triangle read by rows: T(n,k) = number of ways to place k nonattacking kings on an n X n board.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 16, 8, 1, 1, 16, 78, 140, 79, 1, 25, 228, 964, 1987, 1974, 978, 242, 27, 1, 1, 36, 520, 3920, 16834, 42368, 62266, 51504, 21792, 3600, 1, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 3324193, 2882737, 1601292, 569818, 129657, 18389, 1520, 64, 1
Offset: 0

Views

Author

Andrew Woods, Aug 27 2011

Keywords

Comments

Rows 2n and 2n-1 both contain 1 + n^2 entries. Cf. A008794.
Row n sums to A063443(n+1).
Number of walks of length n-1 on a graph in which each node represents a 11-avoiding n-bit binary sequence B and adjacency of B and B' is determined by B'&(B|(B<<1)|(B>>1))=0 and the total number of nonzero bits in the walk is k.
Row n gives the coefficients of the independence polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			The table begins with T(0,0):
  1;
  1,   1;
  1,   4;
  1,   9,  16,   8,   1;
  1,  16,  78, 140,  79;
  ...
T(4,3) = 140 because there are 140 ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other.
		

References

  • Norman Biggs, Algebraic Graph Theory, Cambridge University Press, New York, NY, second edition, 1993.

Crossrefs

Diagonal: A201513.
Cf. A179403, etc., for extension to toroidal boards.
Cf. A166540, etc., for extension into three dimensions.
Cf. A098487 for a clipped version.
Row n sums to A063443(n+1).

Formula

T(n, 0) = 1;
T(n, 1) = n^2;
T(2n-1, n^2-1) = n^3;
T(2n-1, n^2) = 1.

A067960 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw nw-se.

Original entry on oeis.org

1, 9, 34, 961, 25531, 2722500, 464483559, 224546142769, 215560806324388, 509113406167679889, 2590618817013278596997, 30737628149641669227004804, 809724336154415150287031740151, 48754690373355654118816600200711441
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

If n is odd then A067960(n) = A027683(n).
a(18) = 2184710661251680812138610069332410066909052859790416601664. (a(17) = ?) - Vaclav Kotesovec, Sep 16 2014
a(20) = 61548416926224234005237372092957872593295040887178016957765412173582481. - Vaclav Kotesovec, May 18 2021

Examples

			Neighbors for n=4 (dots represent spaces):
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212271.

Extensions

Terms a(12)-a(16) from Vaclav Kotesovec, May 18 2012

A067962 a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.

Original entry on oeis.org

1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

Number of binary arrangements without adjacent 1's on n X n array connected nw-se.
Kitaev and Mansour give a general formula for the number of binary m X n matrices avoiding certain configurations.

Examples

			Neighbors for n=4 (dots represent spaces, circles represent grid points):
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Programs

  • Haskell
    a067962 n = a067962_list !! n
    a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list)
    -- Reinhard Zumkeller, Sep 24 2015
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F->
          F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci]))
        end:
    seq(a(n), n=0..14);  # Alois P. Heinz, May 20 2019
  • Mathematica
    Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
  • PARI
    a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
    

Formula

a(n) = (F(3) * F(4) * ... * F(n+1))^2 * F(n+2), where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^2*((1+sqrt(5))/2)^((n+2)^2)/(5^(n+3/2)) where C=1.226742010720353244... is the Fibonacci Factorial Constant, see A062073. - Vaclav Kotesovec, Oct 28 2011
a(n) = a(n-1) * A001654(n+1), n > 0. - Reinhard Zumkeller, Sep 24 2015

Extensions

Edited by Dean Hickerson, Feb 15 2002
Revised by N. J. A. Sloane following comments from Benoit Cloitre, Nov 12 2003

A245013 Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and 2 X 2 squares; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 21, 35, 21, 13, 1, 1, 1, 1, 21, 43, 93, 93, 43, 21, 1, 1, 1, 1, 34, 85, 269, 314, 269, 85, 34, 1, 1, 1, 1, 55, 171, 747, 1213, 1213, 747, 171, 55, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2014

Keywords

Examples

			A(3,3) = 5:
  ._._._.  .___._.  ._.___.  ._._._.  ._._._.
  |_|_|_|  |   |_|  |_|   |  |_|_|_|  |_|_|_|
  |_|_|_|  |___|_|  |_|___|  |_|   |  |   |_|
  |_|_|_|  |_|_|_|  |_|_|_|  |_|___|  |___|_| .
Square array A(n,k) begins:
  1, 1,  1,  1,   1,    1,     1,      1, ...
  1, 1,  1,  1,   1,    1,     1,      1, ...
  1, 1,  2,  3,   5,    8,    13,     21, ...
  1, 1,  3,  5,  11,   21,    43,     85, ...
  1, 1,  5, 11,  35,   93,   269,    747, ...
  1, 1,  8, 21,  93,  314,  1213,   4375, ...
  1, 1, 13, 43, 269, 1213,  6427,  31387, ...
  1, 1, 21, 85, 747, 4375, 31387, 202841, ...
		

Crossrefs

Columns (or rows) k=0+1,2-10 give: A000012, A000045(n+1), A001045(n+1), A054854, A054855, A063650, A063651, A063652, A063653, A063654.
Main diagonal gives A063443.

Programs

  • Maple
    b:= proc(n, l) option remember; local m, k; m:= min(l[]);
          if m>0 then b(n-m, map(x->x-m, l))
        elif n=0 then 1
        else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
             `if`(n>1 and k `if`(min(n, k)<2, 1, b(max(n, k), [0$min(n, k)])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 2}]], 0]]]]; A[n_, k_] := If[Min[n, k]<2, 1, b[Max[n, k], Table[0, {Min[n, k]}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)

A067958 Number of binary arrangements without adjacent 1's on n X n torus connected e-w ne-sw n-s nw-se.

Original entry on oeis.org

1, 5, 10, 133, 1411, 42938, 1796859, 157763829, 22909432780, 6291183426165, 3032485231813445, 2674030233698391466, 4216437656471537450175, 12038380931111061789962901, 61810608197507432888286102310, 572863067272579464080483552434421
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

For n > 1, a(n) is also the number of ways to populate an n X n toroidal chessboard with non-attacking kings (including the case of zero kings). - Vaclav Kotesovec, Oct 10 2011

Examples

			Neighbors for n=4:
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212269.

Extensions

a(14) from Vaclav Kotesovec, Aug 22 2016
a(15)-a(16) from Vaclav Kotesovec, May 15 2021
Showing 1-10 of 30 results. Next