A247413
Decimal expansion of the entropy constant related to A063443.
Original entry on oeis.org
1, 3, 4, 2, 6, 4, 3, 9, 5, 1, 1, 2, 4
Offset: 1
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343.
- B. D. McKay, On Calkin and Wilf's limit theorem for grid graphs, unpublished note, 1996.
- N. J. Calkin, K. James, and S. Purvis, Counting Kings, 2006, p.9.
- N. J. Calkin and H. S. Wilf, The number of independent sets in a grid graph, preprint, 1995.
- N. J. Calkin and H. S. Wilf, The number of independent sets in a grid graph, SIAM J. Discrete Math, 11 (1998) 54-60.
- Steven R. Finch, Several Constants Arising in Statistical Mechanics, arXiv:math/9810155 [math.CO], 1999, p.8.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p.68-69.
- D. E. Knuth, Nonattacking kings on a chessboard, 1994.
- M. Larsen, The Problem of Kings, The Electronic Journal of Combinatorics 2, 1995.
- Kai Liang, Independent Set Enumeration in King Graphs by Tensor Network Contractions, arXiv:2505.12776 [math.CO], 2025. See p. 6.
- Eric Weisstein's World of Mathematics, Hard Hexagon Entropy Constant
- Eric Weisstein's World of Mathematics, Hard Square Entropy Constant
- H. S. Wilf, The problem of the kings, Elec. J. Combin. 2, 1995.
A045846
Number of distinct ways to cut an n X n square into squares with integer sides.
Original entry on oeis.org
1, 1, 2, 6, 40, 472, 10668, 450924, 35863972, 5353011036, 1500957422222, 790347882174804, 781621363452405930, 1451740730942350766748, 5064070747064013556294032, 33176273260130056822126522884, 408199838581532754602910469192704
Offset: 0
For n=3 the 6 dissections are: the full 3 X 3 square; 9 1 X 1 squares; one 2 X 2 square and five 1 X 1 squares (in 4 ways).
- Andrew Gozzard and Max Ward, Table of n, a(n) for n = 0..25 (terms 0..20 from Steve Butler).
- Steve Butler, Jason Ekstrand, Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 169.
- N. J. A. Sloane, Illustration of the first five terms of A045846 and A224239, page 1 of 4 (Each dissection from A224239 is labeled with the number of its images under the symmetry group of the square. The sum of these numbers is A045846(n).)
- N. J. A. Sloane, Illustration of the first five terms of A045846 and A224239, page 2 of 4 (The largest squares are drawn in red. The next-largest squares, unless of size 1, are drawn in blue.)
- N. J. A. Sloane, Illustration of the first five terms of A045846 and A224239, page 3 of 4 (The largest squares are drawn in red. The next-largest squares, unless of size 1, are drawn in blue.)
- N. J. A. Sloane, Illustration of the first five terms of A045846 and A224239, page 4 of 4 (The largest squares are drawn in red. The next-largest squares, unless of size 1, are drawn in blue.)
- Ed Wynn, Exhaustive generation of Mrs Perkins's quilt square dissections for low orders, arXiv:1308.5420 [math.CO], 2013-2014.
See
A224239 for the number of inequivalent ways.
-
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:=0;
for i from k to nops(l) while l[i]=0 do s:=s+
b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
od; s
fi
end:
a:= n-> b(n, [0$n]):
seq(a(n), n=0..11); # Alois P. Heinz, Apr 15 2013
-
$RecursionLimit = 1000; b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[ Max[l]>n, 0, n == 0 || l == {}, 1, Min[l]>0, t = Min[l]; b[n-t, l-t], True, For[k = 1, True, k++, If[l[[k]] == 0, Break[]]]; s=0; For[i=k, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join[l[[1 ;; k-1]], Table[1+i-k, {i-k+1}], l[[i+1 ;; Length[l]]]]]]; s]]; a[n_] := b[n, Array[0&, n]]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
A067966
Number of binary arrangements without adjacent 1's on n X n array connected n-s.
Original entry on oeis.org
1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0
Neighbors for n=4:
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
-
[Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
-
Table[Fibonacci[n+2]^n, {n, 0, 100}]
-
makelist(fib(n+2)^n, n, 0, 14);
-
a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
A067961
Number of binary arrangements without adjacent 1's on n X n torus connected n-s.
Original entry on oeis.org
1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1
Neighbors for n=4:
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067965
Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.
Original entry on oeis.org
2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
Cf. circle
A000204, line
A000045, arrays: e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A193580
Triangle read by rows: T(n,k) = number of ways to place k nonattacking kings on an n X n board.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 9, 16, 8, 1, 1, 16, 78, 140, 79, 1, 25, 228, 964, 1987, 1974, 978, 242, 27, 1, 1, 36, 520, 3920, 16834, 42368, 62266, 51504, 21792, 3600, 1, 49, 1020, 11860, 85275, 397014, 1220298, 2484382, 3324193, 2882737, 1601292, 569818, 129657, 18389, 1520, 64, 1
Offset: 0
The table begins with T(0,0):
1;
1, 1;
1, 4;
1, 9, 16, 8, 1;
1, 16, 78, 140, 79;
...
T(4,3) = 140 because there are 140 ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other.
- Norman Biggs, Algebraic Graph Theory, Cambridge University Press, New York, NY, second edition, 1993.
- Liang Kai, Rows n = 0..26, flattened (Rows n = 0..20 from Andrew Woods, row n = 21 from Alois P. Heinz)
- Kai Liang, Independent Set Enumeration in King Graphs by Tensor Network Contractions, arXiv:2505.12776 [math.CO], 2025. See p. 1.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964 [math.CO], 2016, Section 4.1.
- Johan Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, King Graph
Cf.
A179403, etc., for extension to toroidal boards.
Cf.
A166540, etc., for extension into three dimensions.
A067960
Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw nw-se.
Original entry on oeis.org
1, 9, 34, 961, 25531, 2722500, 464483559, 224546142769, 215560806324388, 509113406167679889, 2590618817013278596997, 30737628149641669227004804, 809724336154415150287031740151, 48754690373355654118816600200711441
Offset: 1
Neighbors for n=4 (dots represent spaces):
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067962
a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.
Original entry on oeis.org
1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0
Neighbors for n=4 (dots represent spaces, circles represent grid points):
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
- Reinhard Zumkeller, Table of n, a(n) for n = 0..68
- Sergey Kitaev and Toufik Mansour, The problem of the pawns, arXiv:math/0305253 [math.CO], 2003; Annals of Combinatorics 8 (2004) 81-91.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69, 421.
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
-
a067962 n = a067962_list !! n
a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list)
-- Reinhard Zumkeller, Sep 24 2015
-
a:= proc(n) option remember; `if`(n=0, 1, (F->
F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci]))
end:
seq(a(n), n=0..14); # Alois P. Heinz, May 20 2019
-
Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
-
a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
A245013
Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and 2 X 2 squares; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 8, 11, 11, 8, 1, 1, 1, 1, 13, 21, 35, 21, 13, 1, 1, 1, 1, 21, 43, 93, 93, 43, 21, 1, 1, 1, 1, 34, 85, 269, 314, 269, 85, 34, 1, 1, 1, 1, 55, 171, 747, 1213, 1213, 747, 171, 55, 1, 1
Offset: 0
A(3,3) = 5:
._._._. .___._. ._.___. ._._._. ._._._.
|_|_|_| | |_| |_| | |_|_|_| |_|_|_|
|_|_|_| |___|_| |_|___| |_| | | |_|
|_|_|_| |_|_|_| |_|_|_| |_|___| |___|_| .
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, ...
1, 1, 3, 5, 11, 21, 43, 85, ...
1, 1, 5, 11, 35, 93, 269, 747, ...
1, 1, 8, 21, 93, 314, 1213, 4375, ...
1, 1, 13, 43, 269, 1213, 6427, 31387, ...
1, 1, 21, 85, 747, 4375, 31387, 202841, ...
- Liang Kai, Antidiagonals n = 0..80, flattened (antidiagonals n = 0..45 from Alois P. Heinz)
- Kai Liang, Independent Set Enumeration in King Graphs by Tensor Network Contractions, arXiv:2505.12776 [math.CO], 2025. See p. 4.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016.
- Johan Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
Columns (or rows) k=0+1,2-10 give:
A000012,
A000045(n+1),
A001045(n+1),
A054854,
A054855,
A063650,
A063651,
A063652,
A063653,
A063654.
-
b:= proc(n, l) option remember; local m, k; m:= min(l[]);
if m>0 then b(n-m, map(x->x-m, l))
elif n=0 then 1
else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
`if`(n>1 and k `if`(min(n, k)<2, 1, b(max(n, k), [0$min(n, k)])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 2}]], 0]]]]; A[n_, k_] := If[Min[n, k]<2, 1, b[Max[n, k], Table[0, {Min[n, k]}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)
A067958
Number of binary arrangements without adjacent 1's on n X n torus connected e-w ne-sw n-s nw-se.
Original entry on oeis.org
1, 5, 10, 133, 1411, 42938, 1796859, 157763829, 22909432780, 6291183426165, 3032485231813445, 2674030233698391466, 4216437656471537450175, 12038380931111061789962901, 61810608197507432888286102310, 572863067272579464080483552434421
Offset: 1
Neighbors for n=4:
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
Showing 1-10 of 30 results.
Comments