A001654 Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A067966 Number of binary arrangements without adjacent 1's on n X n array connected n-s.
1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0
Comments
Central coefficients of triangle A210341.
Examples
Neighbors for n=4: o o o o | | | | | | | | o o o o | | | | | | | | o o o o | | | | | | | | o o o o
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..60
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69, 380.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Programs
-
Magma
[Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
-
Mathematica
Table[Fibonacci[n+2]^n, {n, 0, 100}]
-
Maxima
makelist(fib(n+2)^n, n, 0, 14);
-
PARI
a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
Formula
a(n) = F(n+2)^n, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) ~ phi^2/sqrt(5) phi^n^2. [Charles R Greathouse IV, Mar 28 2012]
Extensions
Edited by Dean Hickerson, Feb 15 2002
A067961 Number of binary arrangements without adjacent 1's on n X n torus connected n-s.
1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1
Examples
Neighbors for n=4: | | | | o o o o | | | | | | | | o o o o | | | | | | | | o o o o | | | | | | | | o o o o | | | |
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..69
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 409.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A156216. - Paul D. Hanna, Sep 13 2010
Cf. A215941.
Programs
-
Magma
[Lucas(n)^n: n in [1..15]]; // Vincenzo Librandi, Mar 15 2014
-
Maple
a:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]^n: seq(a(n), n=1..15); # Alois P. Heinz, Aug 01 2021
-
Mathematica
Table[LucasL[n]^n,{n,15}] (* Harvey P. Dale, Mar 13 2014 *)
Formula
a(n) = L(n)^n, where L(n) = A000032(n) is the n-th Lucas number.
Logarithmic derivative of A156216. - Paul D. Hanna, Sep 13 2010
Sum_{n>=1} 1/a(n) = A215941. - Amiram Eldar, Nov 17 2020
Extensions
Edited by Dean Hickerson, Feb 15 2002
A067965 Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.
2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1
Examples
Neighbors for n=4 (dots represent spaces): . o..o..o..o ...\/ \/ \/ .../\ /\ /\ . o..o..o..o ...\/ \/ \/ .../\ /\ /\ . o..o..o..o ...\/ \/ \/ .../\ /\ /\ . o..o..o..o
Links
- Liang Kai, Table of n, a(n) for n = 1..27 (first 19 terms from Vaclav Kotesovec)
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69, 417.
Crossrefs
Main diagonal of A181212.
Cf. circle A000204, line A000045, arrays: e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Extensions
Term a(14) from Vaclav Kotesovec, Dec 06 2011
Term a(15) from Vaclav Kotesovec, Jan 03 2012
Term a(16) from Vaclav Kotesovec, May 01 2012
Term a(17)-a(18) from Vaclav Kotesovec, Aug 13 2016
A067960 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw nw-se.
1, 9, 34, 961, 25531, 2722500, 464483559, 224546142769, 215560806324388, 509113406167679889, 2590618817013278596997, 30737628149641669227004804, 809724336154415150287031740151, 48754690373355654118816600200711441
Offset: 1
Comments
a(18) = 2184710661251680812138610069332410066909052859790416601664. (a(17) = ?) - Vaclav Kotesovec, Sep 16 2014
a(20) = 61548416926224234005237372092957872593295040887178016957765412173582481. - Vaclav Kotesovec, May 18 2021
Examples
Neighbors for n=4 (dots represent spaces): . \ /\ /\ /\ / . o..o..o..o . / \/ \/ \/ \ . \ /\ /\ /\ / . o..o..o..o . / \/ \/ \/ \ . \ /\ /\ /\ / . o..o..o..o . / \/ \/ \/ \ . \ /\ /\ /\ / . o..o..o..o . / \/ \/ \/ \
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..16
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 440.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212271.
Extensions
Terms a(12)-a(16) from Vaclav Kotesovec, May 18 2012
A067958 Number of binary arrangements without adjacent 1's on n X n torus connected e-w ne-sw n-s nw-se.
1, 5, 10, 133, 1411, 42938, 1796859, 157763829, 22909432780, 6291183426165, 3032485231813445, 2674030233698391466, 4216437656471537450175, 12038380931111061789962901, 61810608197507432888286102310, 572863067272579464080483552434421
Offset: 1
Comments
For n > 1, a(n) is also the number of ways to populate an n X n toroidal chessboard with non-attacking kings (including the case of zero kings). - Vaclav Kotesovec, Oct 10 2011
Examples
Neighbors for n=4: :\|/\|/\|/\|/ :-o--o--o--o- :/|\/|\/|\/|\ :\|/\|/\|/\|/ :-o--o--o--o- :/|\/|\/|\/|\ :\|/\|/\|/\|/ :-o--o--o--o- :/|\/|\/|\/|\ :\|/\|/\|/\|/ :-o--o--o--o- :/|\/|\/|\/|\
Links
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 214.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212269.
Extensions
a(14) from Vaclav Kotesovec, Aug 22 2016
a(15)-a(16) from Vaclav Kotesovec, May 15 2021
A067963 Number of binary arrangements without adjacent 1's on n X n array connected e-w ne-sw nw-se.
2, 7, 77, 1152, 56549, 3837761, 806190208, 251170142257, 223733272186825, 319544298135448960, 1210302996752248488817, 7876274672755293629849313, 127662922218147601317696761088, 3758866349549535184419575245899295
Offset: 1
Examples
Neighbors for n=4 (dots represent spaces): . o--o--o--o ...\/ \/ \/ .../\ /\ /\ . o--o--o--o ...\/ \/ \/ .../\ /\ /\ . o--o--o--o ...\/ \/ \/ .../\ /\ /\ . o--o--o--o
Links
- R. H. Hardin and Vaclav Kotesovec, Table of n, a(n) for n = 1..30
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69-71.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Diagonal of A228683
Extensions
Terms a(15)-a(19) from Vaclav Kotesovec, May 01 2012
A067964 Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.
2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1
Examples
Neighbors for n=4 (dots represent spaces): . o..o..o..o . |\ |\ |\ | . | \| \| \| . o..o..o..o . |\ |\ |\ | . | \| \| \| . o..o..o..o . |\ |\ |\ | . | \| \| \| . o..o..o..o
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..21
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69-71.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Formula
Limit n->infinity (a(n))^(1/n^2) = 1.503048082... (see A085850)
Extensions
Terms a(14)-a(18) from Vaclav Kotesovec, May 01 2012
A067959 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw n-s nw-se.
1, 7, 22, 547, 9021, 812830, 70046159, 24082448515, 10363980496342, 14228018243052057, 29400555005986658803, 166705587265151114516638, 1606507128309318588452521527, 38505096862341023166325442747581, 1696028983502674228038462924646464012
Offset: 1
Examples
Neighbors for n=4 (dots represent spaces): .\|/\|/\|/\|/ . o..o..o..o ./|\/|\/|\/|\ .\|/\|/\|/\|/ . o..o..o..o ./|\/|\/|\/|\ .\|/\|/\|/\|/ . o..o..o..o ./|\/|\/|\/|\ .\|/\|/\|/\|/ . o..o..o..o ./|\/|\/|\/|\
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..17
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 73.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Extensions
a(13) from Vaclav Kotesovec, Aug 22 2016
a(14) from Vaclav Kotesovec, May 24 2021
a(15) from Sean A. Irvine, Jan 14 2024
A182562 Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0.
2, 16, 288, 11664, 1458000, 506250000, 414720000000, 869730877440000, 5045702916833280000, 77297454895962562560000, 3017525202366485003182080000, 307389127582207654481154908160000, 83016370640108703579427655610531840000, 58770343311359208383258439665073059266560000
Offset: 1
Keywords
Comments
Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..60
- V. Kotesovec, Non-attacking chess pieces
Programs
-
Mathematica
Table[If[EvenQ[n],Fibonacci[n/2+2]^(n+2)*Product[Fibonacci[j+2]^4,{j,1,n/2-1}],Fibonacci[(n+1)/2+2]^((n+1)/2)*Fibonacci[(n-1)/2+2]^((n-1)/2)*Product[Fibonacci[j+2]^4,{j,1,(n-1)/2}]],{n,1,20}]
Formula
a(n) = F(n/2+2)^(n+2)*prod(j=1,n/2-1,F(j+2)^4) if n is even, F((n+1)/2+2)^((n+1)/2)*F((n-1)/2+2)^((n-1)/2)*prod(j=1,(n-1)/2,F(j+2)^4) if n is odd, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^4*((1+sqrt(5))/2)^((n+2)*(n+4))/5^(3/2*(n+2)), where C=1.226742010720353244... is Fibonacci Factorial Constant, see A062073.
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
PARI
Python
Python
Formula
Extensions