A067966
Number of binary arrangements without adjacent 1's on n X n array connected n-s.
Original entry on oeis.org
1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0
Neighbors for n=4:
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
-
[Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
-
Table[Fibonacci[n+2]^n, {n, 0, 100}]
-
makelist(fib(n+2)^n, n, 0, 14);
-
a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
A067961
Number of binary arrangements without adjacent 1's on n X n torus connected n-s.
Original entry on oeis.org
1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1
Neighbors for n=4:
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067965
Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.
Original entry on oeis.org
2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
Cf. circle
A000204, line
A000045, arrays: e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067960
Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw nw-se.
Original entry on oeis.org
1, 9, 34, 961, 25531, 2722500, 464483559, 224546142769, 215560806324388, 509113406167679889, 2590618817013278596997, 30737628149641669227004804, 809724336154415150287031740151, 48754690373355654118816600200711441
Offset: 1
Neighbors for n=4 (dots represent spaces):
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
. \ /\ /\ /\ /
. o..o..o..o
. / \/ \/ \/ \
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067962
a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.
Original entry on oeis.org
1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0
Neighbors for n=4 (dots represent spaces, circles represent grid points):
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
- Reinhard Zumkeller, Table of n, a(n) for n = 0..68
- Sergey Kitaev and Toufik Mansour, The problem of the pawns, arXiv:math/0305253 [math.CO], 2003; Annals of Combinatorics 8 (2004) 81-91.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69, 421.
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
-
a067962 n = a067962_list !! n
a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list)
-- Reinhard Zumkeller, Sep 24 2015
-
a:= proc(n) option remember; `if`(n=0, 1, (F->
F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci]))
end:
seq(a(n), n=0..14); # Alois P. Heinz, May 20 2019
-
Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
-
a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
A067958
Number of binary arrangements without adjacent 1's on n X n torus connected e-w ne-sw n-s nw-se.
Original entry on oeis.org
1, 5, 10, 133, 1411, 42938, 1796859, 157763829, 22909432780, 6291183426165, 3032485231813445, 2674030233698391466, 4216437656471537450175, 12038380931111061789962901, 61810608197507432888286102310, 572863067272579464080483552434421
Offset: 1
Neighbors for n=4:
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
:\|/\|/\|/\|/
:-o--o--o--o-
:/|\/|\/|\/|\
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067963
Number of binary arrangements without adjacent 1's on n X n array connected e-w ne-sw nw-se.
Original entry on oeis.org
2, 7, 77, 1152, 56549, 3837761, 806190208, 251170142257, 223733272186825, 319544298135448960, 1210302996752248488817, 7876274672755293629849313, 127662922218147601317696761088, 3758866349549535184419575245899295
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
...\/ \/ \/
.../\ /\ /\
. o--o--o--o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A067964
Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.
Original entry on oeis.org
2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1
Neighbors for n=4 (dots represent spaces):
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
Showing 1-8 of 8 results.
Comments