cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A067966 Number of binary arrangements without adjacent 1's on n X n array connected n-s.

Original entry on oeis.org

1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

Central coefficients of triangle A210341.

Examples

			Neighbors for n=4:
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Programs

  • Magma
    [Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
  • Mathematica
    Table[Fibonacci[n+2]^n, {n, 0, 100}]
  • Maxima
    makelist(fib(n+2)^n, n, 0, 14);
    
  • PARI
    a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
    

Formula

a(n) = F(n+2)^n, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) ~ phi^2/sqrt(5) phi^n^2. [Charles R Greathouse IV, Mar 28 2012]

Extensions

Edited by Dean Hickerson, Feb 15 2002

A067961 Number of binary arrangements without adjacent 1's on n X n torus connected n-s.

Original entry on oeis.org

1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4:
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A156216. - Paul D. Hanna, Sep 13 2010
Cf. A215941.

Programs

  • Magma
    [Lucas(n)^n: n in [1..15]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]^n:
    seq(a(n), n=1..15);  # Alois P. Heinz, Aug 01 2021
  • Mathematica
    Table[LucasL[n]^n,{n,15}] (* Harvey P. Dale, Mar 13 2014 *)

Formula

a(n) = L(n)^n, where L(n) = A000032(n) is the n-th Lucas number.
Logarithmic derivative of A156216. - Paul D. Hanna, Sep 13 2010
Sum_{n>=1} 1/a(n) = A215941. - Amiram Eldar, Nov 17 2020

Extensions

Edited by Dean Hickerson, Feb 15 2002

A067965 Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.

Original entry on oeis.org

2, 9, 119, 2704, 177073, 21836929, 6985036032, 4576976735769, 7263963336910751, 24830487842030082304, 198126078679714777857441, 3494153303407491549112098721, 141264727800378056245286463971328, 12779122891585386852029424628087941481, 2628141044813862018744988536642011269669959
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
...\/ \/ \/
.../\ /\ /\
. o..o..o..o
		

Crossrefs

Main diagonal of A181212.
Cf. circle A000204, line A000045, arrays: e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

Term a(14) from Vaclav Kotesovec, Dec 06 2011
Term a(15) from Vaclav Kotesovec, Jan 03 2012
Term a(16) from Vaclav Kotesovec, May 01 2012
Term a(17)-a(18) from Vaclav Kotesovec, Aug 13 2016

A067960 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw nw-se.

Original entry on oeis.org

1, 9, 34, 961, 25531, 2722500, 464483559, 224546142769, 215560806324388, 509113406167679889, 2590618817013278596997, 30737628149641669227004804, 809724336154415150287031740151, 48754690373355654118816600200711441
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

If n is odd then A067960(n) = A027683(n).
a(18) = 2184710661251680812138610069332410066909052859790416601664. (a(17) = ?) - Vaclav Kotesovec, Sep 16 2014
a(20) = 61548416926224234005237372092957872593295040887178016957765412173582481. - Vaclav Kotesovec, May 18 2021

Examples

			Neighbors for n=4 (dots represent spaces):
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
.  \ /\ /\ /\ /
.   o..o..o..o
.  / \/ \/ \/ \
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212271.

Extensions

Terms a(12)-a(16) from Vaclav Kotesovec, May 18 2012

A067962 a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.

Original entry on oeis.org

1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

Number of binary arrangements without adjacent 1's on n X n array connected nw-se.
Kitaev and Mansour give a general formula for the number of binary m X n matrices avoiding certain configurations.

Examples

			Neighbors for n=4 (dots represent spaces, circles represent grid points):
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Programs

  • Haskell
    a067962 n = a067962_list !! n
    a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list)
    -- Reinhard Zumkeller, Sep 24 2015
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F->
          F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci]))
        end:
    seq(a(n), n=0..14);  # Alois P. Heinz, May 20 2019
  • Mathematica
    Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
  • PARI
    a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
    

Formula

a(n) = (F(3) * F(4) * ... * F(n+1))^2 * F(n+2), where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^2*((1+sqrt(5))/2)^((n+2)^2)/(5^(n+3/2)) where C=1.226742010720353244... is the Fibonacci Factorial Constant, see A062073. - Vaclav Kotesovec, Oct 28 2011
a(n) = a(n-1) * A001654(n+1), n > 0. - Reinhard Zumkeller, Sep 24 2015

Extensions

Edited by Dean Hickerson, Feb 15 2002
Revised by N. J. A. Sloane following comments from Benoit Cloitre, Nov 12 2003

A228683 T(n,k)=Number of nXk binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 8, 19, 17, 16, 13, 40, 77, 41, 32, 21, 97, 216, 313, 99, 64, 34, 217, 809, 1152, 1277, 239, 128, 55, 508, 2529, 6737, 6160, 5215, 577, 256, 89, 1159, 8832, 28977, 56549, 32928, 21305, 1393, 512, 144, 2683, 28793, 152048, 333517, 475809, 176032
Offset: 1

Views

Author

R. H. Hardin Aug 30 2013

Keywords

Comments

Table starts
...2....3......5.......8........13.........21...........34............55
...4....7.....19......40........97........217..........508..........1159
...8...17.....77.....216.......809.......2529.........8832.........28793
..16...41....313....1152......6737......28977.......152048........699833
..32...99...1277....6160.....56549.....333517......2644336......17124415
..64..239...5215...32928....475809....3837761.....46125216.....419022831
.128..577..21305..176032...4008817...44171841....806190208...10258304689
.256.1393..87049..941056..33795201..508425617..14105294112..251170142257
.512.3363.355685.5030848.284980061.5852202757.246929287360.6150224353031

Examples

			Some solutions for n=4 k=4
..0..0..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..1..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..0....0..0..0..1....1..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..1....0..1..0..1....1..0..0..0....0..0..1..0....0..0..0..0
		

Crossrefs

Column 1 is A000079
Column 2 is A001333(n+1)
Diagonal is A067963
Row 1 is A000045(n+2)
Row 2 is A006130(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3)
k=4: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3)
k=5: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6)
k=6: [order 7]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -5*a(n-3)
n=4: a(n) = 2*a(n-1) +16*a(n-2) -7*a(n-3) -18*a(n-4)
n=5: [order 7]
n=6: [order 10]
n=7: [order 16]

A067958 Number of binary arrangements without adjacent 1's on n X n torus connected e-w ne-sw n-s nw-se.

Original entry on oeis.org

1, 5, 10, 133, 1411, 42938, 1796859, 157763829, 22909432780, 6291183426165, 3032485231813445, 2674030233698391466, 4216437656471537450175, 12038380931111061789962901, 61810608197507432888286102310, 572863067272579464080483552434421
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

For n > 1, a(n) is also the number of ways to populate an n X n toroidal chessboard with non-attacking kings (including the case of zero kings). - Vaclav Kotesovec, Oct 10 2011

Examples

			Neighbors for n=4:
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
  :\|/\|/\|/\|/
  :-o--o--o--o-
  :/|\/|\/|\/|\
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A212269.

Extensions

a(14) from Vaclav Kotesovec, Aug 22 2016
a(15)-a(16) from Vaclav Kotesovec, May 15 2021

A067964 Number of binary arrangements without adjacent 1's on n X n array connected n-s nw-se.

Original entry on oeis.org

2, 8, 90, 1876, 103484, 11462588, 3118943536, 1808994829500, 2465526600093372, 7394315828592829424, 50975951518289853305508, 784977037926751747674903856, 27509351187362150581313065415008, 2167705218542258344490649896364635660, 387057670485382113845659790427906287869964
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
. |\ |\ |\ |
. | \| \| \|
. o..o..o..o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Formula

Limit n->infinity (a(n))^(1/n^2) = 1.503048082... (see A085850)

Extensions

Terms a(14)-a(18) from Vaclav Kotesovec, May 01 2012

A067959 Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw n-s nw-se.

Original entry on oeis.org

1, 7, 22, 547, 9021, 812830, 70046159, 24082448515, 10363980496342, 14228018243052057, 29400555005986658803, 166705587265151114516638, 1606507128309318588452521527, 38505096862341023166325442747581, 1696028983502674228038462924646464012
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4 (dots represent spaces):
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Extensions

a(13) from Vaclav Kotesovec, Aug 22 2016
a(14) from Vaclav Kotesovec, May 24 2021
a(15) from Sean A. Irvine, Jan 14 2024

A182562 Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0.

Original entry on oeis.org

2, 16, 288, 11664, 1458000, 506250000, 414720000000, 869730877440000, 5045702916833280000, 77297454895962562560000, 3017525202366485003182080000, 307389127582207654481154908160000, 83016370640108703579427655610531840000, 58770343311359208383258439665073059266560000
Offset: 1

Views

Author

Vaclav Kotesovec, May 05 2012

Keywords

Comments

Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235).

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ[n],Fibonacci[n/2+2]^(n+2)*Product[Fibonacci[j+2]^4,{j,1,n/2-1}],Fibonacci[(n+1)/2+2]^((n+1)/2)*Fibonacci[(n-1)/2+2]^((n-1)/2)*Product[Fibonacci[j+2]^4,{j,1,(n-1)/2}]],{n,1,20}]

Formula

a(n) = F(n/2+2)^(n+2)*prod(j=1,n/2-1,F(j+2)^4) if n is even, F((n+1)/2+2)^((n+1)/2)*F((n-1)/2+2)^((n-1)/2)*prod(j=1,(n-1)/2,F(j+2)^4) if n is odd, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^4*((1+sqrt(5))/2)^((n+2)*(n+4))/5^(3/2*(n+2)), where C=1.226742010720353244... is Fibonacci Factorial Constant, see A062073.
Showing 1-10 of 10 results.