cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sture Sjöstedt

Sture Sjöstedt's wiki page.

Sture Sjöstedt has authored 31 sequences. Here are the ten most recent ones:

A293846 Numbers such that k is the altitude of a Heronian triangle with sides m-13, m, m+13.

Original entry on oeis.org

9, 24, 39, 60, 105, 156, 231, 396, 585, 864, 1479, 2184, 3225, 5520, 8151, 12036, 20601, 30420, 44919, 76884, 113529, 167640, 286935, 423696, 625641, 1070856, 1581255, 2334924, 3996489, 5901324, 8714055, 14915100, 22024041, 32521296, 55663911, 82194840
Offset: 0

Author

Sture Sjöstedt, Dec 27 2017

Keywords

Comments

a(n) gives the values of y satifacting 3*x^2 - y^2 = 507; corresponding x values are given by A293817.
a(n)/3 is the radius of the inscribed circle.

Examples

			If the sides are 15, 28, 41 the triangle has the altitude 9 and is a part of the Pythagorean triangle with the sides 9, 40, 41, so 9 is a term.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 3(3x^4 +8x^3 +13x^2 +8x +3)/(x^6 -4x^3 +1), {x, 0, 35}], x] (* or *)
    LinearRecurrence[{0, 0, 4, 0, 0, -1}, 3 {3, 8, 13, 20, 35, 52}, 36] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    Vec(3*(3 + 8*x + 13*x^2 + 8*x^3 + 3*x^4) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 27 2017

Formula

a(n) = 4*a(n-3) - a(n-6), a(1)=9, a(2)=24, a(3)=39, a(4)=60, a(5)=105, a(6)=156.
G.f.: 3*(3 + 8*x + 13*x^2 + 8*x^3 + 3*x^4) / (1 - 4*x^3 + x^6). - Colin Barker, Dec 27 2017

A293817 Numbers k such that m=2*k is the middle side in a Heronian triangle with sides m-13, m , m+13.

Original entry on oeis.org

13, 14, 19, 26, 37, 62, 91, 134, 229, 338, 499, 854, 1261, 1862, 3187, 4706, 6949, 11894, 17563, 25934, 44389, 65546, 96787, 165662, 244621, 361214, 618259, 912938, 1348069, 2307374, 3407131, 5031062, 8611237, 12715586, 18776179, 32137574, 47455213, 70073654
Offset: 0

Author

Sture Sjöstedt, Dec 27 2017

Keywords

Comments

a(n) gives values of x satisfying 3*x^2 - y^2 = 507; corresponding y values are given by A293846.

Examples

			The smallest triangle of this type with 3 acute angles has the sides: 61, 74, 87.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,4,0,0,-1},{13,14,19,26,37,62},40] (* Harvey P. Dale, Oct 10 2023 *)
  • PARI
    Vec((13 + 14*x + 19*x^2 - 26*x^3 - 19*x^4 - 14*x^5) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 27 2017

Formula

a(n) = 4*a(n-3)-a(n-6), a(1)= 13, a(2)= 14, a(3)= 19, a(4)= 26, a(5)= 37, a(6)= 62.
G.f.: (13 + 14*x + 19*x^2 - 26*x^3 - 19*x^4 - 14*x^5) / (1 - 4*x^3 + x^6). - Colin Barker, Dec 27 2017

A296796 Numbers k such that k is the altitude of a Heronian triangle with sides m - 11, m, m + 11.

Original entry on oeis.org

12, 15, 33, 63, 72, 132, 240, 273, 495, 897, 1020, 1848, 3348, 3807, 6897, 12495, 14208, 25740, 46632, 53025, 96063, 174033, 197892, 358512, 649500, 738543, 1337985, 2423967, 2756280, 4993428, 9046368, 10286577, 18635727, 33761505, 38390028, 69549480
Offset: 0

Author

Sture Sjöstedt, Dec 20 2017

Keywords

Comments

a(n) gives the values of y satisfying 3*x^2 - y^2 = 363; corresponding x values are given by A296795.
a(n)/3 is the radius of the inscribed circle.

Examples

			If the sides are 17, 28, 39 the triangle has the altitude 15 against 28 and is a part of the Pythagorean triangle with the sides 15, 36, 39, so 15 is a term.
		

Programs

  • Mathematica
    CoefficientList[Series[3 (4 + 5 x + 11 x^2 + 5 x^3 + 4 x^4)/(1 - 4 x^3 + x^6), {x, 0, 35}], x] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    Vec(3*(4 + 5*x + 11*x^2 + 5*x^3 + 4*x^4) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 22 2017

Formula

From Colin Barker, Dec 22 2017: (Start)
G.f.: 3*(4 + 5*x + 11*x^2 + 5*x^3 + 4*x^4) / (1 - 4*x^3 + x^6).
a(n) = 4*a(n-3) - a(n-6) for n>5.
(End)

Extensions

More terms from Colin Barker, Dec 22 2017

A296795 Numbers k such that m = 2*k is the middle side in a Heronian triangle with sides m - 11, m, m + 11.

Original entry on oeis.org

13, 14, 22, 38, 43, 77, 139, 158, 286, 518, 589, 1067, 1933, 2198, 3982, 7214, 8203, 14861, 26923, 30614, 55462, 100478, 114253, 206987, 374989, 426398, 772486, 1399478, 1591339, 2882957, 5222923, 5938958, 10759342, 19492214, 22164493, 40154411, 72745933
Offset: 0

Author

Sture Sjöstedt, Dec 20 2017

Keywords

Comments

a(n) gives values of x satisfying 3*x^2 - y^2 = 363; the corresponding y values are given by A296796.

Examples

			The smallest triangle of this type has following sides: 15, 26, 37 has the altitude 12 and is a part of the Pythagorean triangle with sides : 12, 35, 37.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(13 + 14 x + 22 x^2 - 14 x^3 - 13 x^4 - 11 x^5)/(1 - 4 x^3 + x^6), {x, 0, 36}], x] (* Michael De Vlieger, Dec 22 2017 *)
  • PARI
    Vec((13 + 14*x + 22*x^2 - 14*x^3 - 13*x^4 - 11*x^5) / (1 - 4*x^3 + x^6) + O(x^40)) \\ Colin Barker, Dec 22 2017

Formula

From Colin Barker, Dec 22 2017: (Start)
G.f.: (13 + 14*x + 22*x^2 - 14*x^3 - 13*x^4 - 11*x^5) / (1 - 4*x^3 + x^6).
a(n) = 4*a(n-3) - a(n-6) for n>5.
(End)

Extensions

More terms from Colin Barker, Dec 22 2017

A291591 Numbers k such that there exist exactly five distinct Pythagorean triangles, at least one of them primitive, with area k.

Original entry on oeis.org

71831760, 73513440, 1675212000, 6913932480, 4323749790360, 2678930100000, 175434192299520, 503151375767040
Offset: 1

Author

Sture Sjöstedt, Aug 27 2017

Keywords

Comments

I solve x^2 + 3*y^2 = (2*r)^2 over the positive integers. q, r, q-p and p are the y-coordinates in the first quadrant. Area = q*r*(q-p)*p. There are three Pythagorean triangles with this area. j, x, y with x > y and Area = j^2*x*y*(x-y)*(x+y) gives the area of an Pythagorean triangle.
Example: r = 169 in x^2 + 3*y^2 = (2*169)^2 gives q = 176, r = 169, q-p = 161 and p = 15;
k = q*r*(q-p)*p = 176*169*161*15 = 71831760.
j = 26, x = 23, y = 12 and j = 26, x = 28, y = 5 gives two Pythagorean triangles with k = 71831760;
k = 676*23*12*11*35 = 71831760 and k = 676*28*5*23*33 = 71831760.

Examples

			p^2 - p*q + q^2 = r^2;
p = 115, q = 448, q-p = 333, r = 403;
k = p*q*(q-p)*r = 115*448*333*403 = 6913932480.
x = 414, y = 104 and x = 558, y = 40 gives the same area.
k = x*y*(x-y)*(x+y) = 414*104*310*518 = 6913932480.
k = x*y*(x-y)*(x+y) = 558*40*518*598 = 6913932480.
		

Crossrefs

Cf. A055193.

Extensions

a(2), a(4)-a(7) from Giovanni Resta, Aug 28 2017
Missing term 73513440 inserted by Miguel-Ángel Pérez García-Ortega, Jul 19 2021

A291420 Numbers n such that there exist exactly four distinct Pythagorean triangles, at least one of them primitive, with area n.

Original entry on oeis.org

341880, 8168160, 14636160, 17957940, 52492440, 116396280, 1071572040, 1187525640, 1728483120, 5988702720, 6609482880, 22539095040, 29239970760, 136496680320, 258670630680, 398648544840, 494892478080, 592003418160, 1329673884000, 1343798407560, 2190884461920
Offset: 1

Author

Sture Sjöstedt, Aug 23 2017

Keywords

Comments

Numbers n such that there exist positive integers x, y with x > y and n = x*y*(x-y)*(x+y).
Many of them consist of a Pythagorean triangle plus a triple which is a solution to Carroll's problem: Find three Pythagorean triangles with the same area.

Examples

			p^2 - p*q + q^2 = r^2;
p = 208, q = 418, r = 362, q - p = 210;
n = p*r*q*(q-p) = 208*418*362*210 = 6609482880.
x = 640, y = 627 gives the same area:
n = x*y*(x-y)*(x+y) = 640*627*13*1267 = 6609482880.
		

Extensions

a(12)-a(21) from Giovanni Resta, Aug 28 2017

A266698 x-values of solutions to the Diophantine equation x^2 - 7*y^2 = 2.

Original entry on oeis.org

3, 45, 717, 11427, 182115, 2902413, 46256493, 737201475, 11748967107, 187246272237, 2984191388685, 47559815946723, 757972863758883, 12080006004195405, 192522123203367597, 3068273965249686147, 48899861320791610755, 779329507167416085933, 12420372253357865764173, 197946626546558436140835
Offset: 1

Author

Sture Sjöstedt, Jan 03 2016

Keywords

Comments

A159678 gives the y-values of solutions to the Diophantine equation x^2 - 7*y^2 = 2.

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^7] | IsSquare((n^2-2)/7)]; // Vincenzo Librandi, Jan 06 2016
    
  • Mathematica
    LinearRecurrence[{16,-1}, {3, 45}, 20 ]
  • PARI
    lista(nn) = {print1(x = 3, ", "); print1(y = 45, ", "); for (n=2, nn, z = 16*y - x; print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Jan 05 2016
    
  • SageMath
    [3*(chebyshev_U(n-1, 8) - chebyshev_U(n-2, 8)) for n in (1..30)] # G. C. Greubel, Jun 25 2022

Formula

a(1)=3, a(2)=45, a(n) = 16*a(n-1) - a(n-2).
a(n) = A041008(4n-2). - Robert Israel, Jan 05 2016
From R. J. Mathar, Jan 12 2016: (Start)
G.f.: 3*x*(1-x) / ( 1-16*x+x^2 ).
a(n) = 3*A157456(n). (End)
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = 3*(ChebyshevU(n-1, 8) - ChebyshevU(n-2, 8)).
E.g.f.: exp(8*x)*(3*cosh(3*sqrt(7)*x) - sqrt(7)*sinh(3*sqrt(7)*x)) - 3. (End)

A217975 Integers k such that 2*k^2 - 7 is a square.

Original entry on oeis.org

2, 4, 8, 22, 46, 128, 268, 746, 1562, 4348, 9104, 25342, 53062, 147704, 309268, 860882, 1802546, 5017588, 10506008, 29244646, 61233502, 170450288, 356895004, 993457082, 2080136522, 5790292204, 12123924128, 33748296142, 70663408246, 196699484648
Offset: 1

Author

Sture Sjöstedt, Oct 16 2012

Keywords

Comments

a(n) gives y-values solving the Diophantine equation x^2 + 7 = 2*y^2. A077446(n) gives the x-values. - Sture Sjöstedt, Oct 16 2012
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 28 = 0. - Colin Barker, Feb 08 2014

Examples

			Since 2(4^2) - 7 = 25 = 5^2, and 4 is the second number with this property, a(2) = 4.
		

Crossrefs

Cf. A077442 (2*n^2 + 7 is a square).

Programs

  • Magma
    I:=[2, 4, 8, 22]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..31]]; // Vincenzo Librandi, Oct 16 2012
    
  • Mathematica
    LinearRecurrence[{0, 6, 0, -1}, {2, 4, 8, 22}, 50] (* Sture Sjöstedt, Oct 16 2012 *)
  • PARI
    Vec(2*x*(1-x)*(x^2+3*x+1)/(x^2-2*x-1)/(x^2+2*x-1)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012

Formula

a(n) = 6*a(n - 2) - a(n - 4) with a(1)=2, a(2)=4, a(3)=8, a(4)=22. - Sture Sjöstedt, Oct 16 2012
a(n)*a(n+3)-a(n+1)*a(n+2) = 10-2*(-1)^n. - Bruno Berselli, Oct 25 2012
a(n) = 2*A006452(n). - R. J. Mathar, Oct 17 2012
G.f.: -2*x*(x - 1)*(x^2 + 3*x + 1)/((x^2 - 2*x - 1)*(x^2 + 2*x - 1)). - Colin Barker, Oct 24 2012
a(n) = a(-n+1) = ((4+sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor(n/2))+(4-sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor(n/2)))/4. - Bruno Berselli, Oct 25 2012
a(2n-1) = A078343(2n-1), a(2n) = A100525(n-1). - Bruno Berselli, Oct 25 2012

A201157 y-values in the solution to 5*x^2 - 20 = y^2.

Original entry on oeis.org

0, 5, 15, 40, 105, 275, 720, 1885, 4935, 12920, 33825, 88555, 231840, 606965, 1589055, 4160200, 10891545, 28514435, 74651760, 195440845, 511670775, 1339571480, 3507043665, 9181559515, 24037634880, 62931345125, 164756400495, 431337856360, 1129257168585
Offset: 1

Author

Sture Sjöstedt, Nov 27 2011

Keywords

Comments

Except a(1), the same as A054888. - R. J. Mathar, Nov 28 2011

Examples

			15 is in the sequence because 15^2 = 5*7^2 - 20.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -1}, {0, 5}, 50]

Formula

a(n) = 3*a(n-1) - a(n-2), n>2.
G.f.: 5*x^2 / (x^2 - 3*x + 1). - Colin Barker, Apr 08 2013
a(n) = 5*Fibonacci(2*n-2) = Lucas(2*n-1) + Lucas(2*n-3) with Lucas(-1) = -1. - Bruno Berselli, Feb 15 2017
a(n) = Lucas(n)^2 - Lucas(n-2)^2. - Greg Dresden, Apr 15 2022

Extensions

More terms from Colin Barker, Apr 08 2013

A200407 The x-values in the solution to 19*x^2 - 18 = y^2.

Original entry on oeis.org

1, 9, 131, 209, 3051, 44539, 71059, 1037331, 15143129, 24159851, 352689489, 5148619321, 8214278281, 119913388929, 1750515426011, 2792830455689, 40770199546371, 595170096224419, 949554140655979, 13861747932377211, 202356082200876449, 322845614992577171
Offset: 1

Author

Sture Sjöstedt, Nov 17 2011

Keywords

Comments

When are both n+1 and 19*n+1 perfect squares? This gives the equation 19*x^2-18=y^2.

Examples

			a(7)=340*209-1=71059.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 9, 131, 209, 3051, 44539}, 50]
  • PARI
    Vec(-x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013

Formula

a(n) = 340*a(n-3)+a(n-6), a(1)=1, a(2)=9, a(3)=131, a(4)=209, a(5)=3051, a(6)=44539.
G.f.: -x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1) / (x^6-340*x^3+1). - Colin Barker, Sep 01 2013