A291420 Numbers n such that there exist exactly four distinct Pythagorean triangles, at least one of them primitive, with area n.
341880, 8168160, 14636160, 17957940, 52492440, 116396280, 1071572040, 1187525640, 1728483120, 5988702720, 6609482880, 22539095040, 29239970760, 136496680320, 258670630680, 398648544840, 494892478080, 592003418160, 1329673884000, 1343798407560, 2190884461920
Offset: 1
Keywords
Examples
p^2 - p*q + q^2 = r^2; p = 208, q = 418, r = 362, q - p = 210; n = p*r*q*(q-p) = 208*418*362*210 = 6609482880. x = 640, y = 627 gives the same area: n = x*y*(x-y)*(x+y) = 640*627*13*1267 = 6609482880.
Extensions
a(12)-a(21) from Giovanni Resta, Aug 28 2017
Comments