cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109395 Denominator of phi(n)/n = Product_{p|n} (1 - 1/p); phi(n)=A000010(n), the Euler totient function.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 2, 33, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 11, 7, 19, 29, 59, 15, 61, 31, 7, 2, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, 15, 19, 77, 13, 79, 5, 3
Offset: 1

Views

Author

Franz Vrabec, Aug 26 2005

Keywords

Comments

a(n)=2 iff n=2^k (k>0); otherwise a(n) is odd. If p is prime, a(p)=p; the converse is false, e.g.: a(15)=15. It is remarkable that this sequence often coincides with A006530, the largest prime P dividing n. Theorem: a(n)=P if and only if for every prime p < P in n there is some prime q in n with p|(q-1). - Franz Vrabec, Aug 30 2005

Examples

			a(10) = 10/gcd(10,phi(10)) = 10/gcd(10,4) = 10/2 = 5.
		

Crossrefs

Cf. A076512 for the numerator.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

Formula

a(n) = n/gcd(n, phi(n)) = n/A009195(n).
From Antti Karttunen, Feb 09 2019: (Start)
a(n) = denominator of A173557(n)/A007947(n).
a(2^n) = 2 for all n >= 1.
(End)
From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean of phi(n)/n: lim_{m->oo} (1/m) * Sum_{n=1..m} A076512(n)/a(n) = 6/Pi^2 (A059956).
Asymptotic mean of n/phi(n): lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A076512(n) = zeta(2)*zeta(3)/zeta(6) (A082695). (End)

A318305 a(n) = Product_{primes p dividing n} p - Product_{primes p dividing n} (p-1).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 4, 1, 8, 7, 1, 1, 4, 1, 6, 9, 12, 1, 4, 1, 14, 1, 8, 1, 22, 1, 1, 13, 18, 11, 4, 1, 20, 15, 6, 1, 30, 1, 12, 7, 24, 1, 4, 1, 6, 19, 14, 1, 4, 15, 8, 21, 30, 1, 22, 1, 32, 9, 1, 17, 46, 1, 18, 25, 46, 1, 4, 1, 38, 7, 20, 17, 54, 1, 6, 1, 42, 1, 30, 21, 44, 31, 12, 1, 22, 19, 24, 33, 48, 23, 4, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Examples

			For n = 45 = 3^2 * 5, the prime factors are 3 and 5, thus a(45) = (3*5) - (2*4) = 15 - 8 = 7.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065463 - A307868 = 0.232761... . - _Amiram Eldar_, Dec 07 2023
		

Crossrefs

Programs

Formula

a(n) = A051953(n)/A003557(n) = A007947(n) - A173557(n) = A173557(n) - A318304(n).

Extensions

Corrected the notation in the definition - Antti Karttunen, Feb 03 2024
Showing 1-2 of 2 results.