cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A344699 a(n) = A344697(A108951(n)).

Original entry on oeis.org

1, 1, 1, 6, 1, 6, 1, 4, 72, 6, 1, 4, 1, 6, 72, 24, 1, 48, 1, 4, 72, 6, 1, 24, 2160, 6, 18, 4, 1, 48, 1, 16, 72, 6, 2160, 288, 1, 6, 72, 24, 1, 48, 1, 4, 18, 6, 1, 16, 5760, 288, 72, 4, 1, 108, 2160, 24, 72, 6, 1, 288, 1, 6, 18, 96, 2160, 48, 1, 4, 72, 288, 1, 64, 1, 6, 108, 4, 5760, 48, 1, 16, 2592, 6, 1, 288, 2160
Offset: 1

Views

Author

Antti Karttunen, May 26 2021

Keywords

Crossrefs

Cf. A000203, A001615, A108951, A337203, A344697, A344698, A344701 (apparently positions of records).

Programs

A349574 Lexicographically earliest infinite sequence such that a(i) = a(j) => A344696(i) = A344696(j) and A344697(i) = A344697(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 5, 1, 4, 1, 2, 1, 1, 1, 3, 6, 1, 7, 2, 1, 1, 1, 8, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 5, 10, 6, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 6, 2, 1, 1, 1, 5, 13, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 8, 1, 10, 4, 14, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A344696(n), A344697(n)].
For all i, j, A003557(i) = A003557(j) => a(i) = a(j); in other words, this sequence is a function of A003557. This follows because A344696(n) = A344696(A057521(n)), A344697(n) = A344696(A057521(n)), and A057521(n) = A064549(A003557(n)).
Apparently, A081770 gives the positions of 2's, which occur on those n where A344696(n) = 7 and A344697(n) = 6.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    Aux349574(n) = { my(s=sigma(n),u=A001615(n),g=gcd(u,s)); [s/g, u/g]; };
    v349574 = rgs_transform(vector(up_to, n, Aux349574(n)));
    A349574(n) = v349574[n];

Formula

For all n >= 1, a(n) = a(A057521(n)). [See comments]

A344695 a(n) = gcd(sigma(n), psi(n)), where sigma is the sum of divisors function, A000203, and psi is the Dedekind psi function, A001615.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 8, although a(4) = 1 and a(27) = 4. See A344702.
A more specific property holds: for prime p that does not divide n, a(p*n) = a(p) * a(n). In particular, on squarefree numbers (A005117) this sequence coincides with sigma and psi, which are multiplicative.
If prime p divides the squarefree part of n then p+1 divides a(n). (For example, 20 has square part 4 and squarefree part 5, so 5+1 divides a(20) = 6.) So a(n) = 1 only if n is square. The first square n with a(n) > 1 is a(196) = 21. See A344703.
Conjecture: the set of primes that appear in the sequence is A065091 (the odd primes). 5 does not appear as a term until a(366025) = 5, where 366025 = 5^2 * 11^4. At this point, the missing numbers less than 22 are 2, 10 and 17. 17 appears at the latest by a(17^2 * 103^16) = 17.

Crossrefs

Cf. A000203, A001615, A005117, A244963, A344696, A344697, A344702, A344703 (numbers k for which a(k^2) > 1).
Subsets of range: A008864, A065091 (conjectured).

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1,n],DivisorSum[n,MoebiusMu[n/#]^2*#&]],{n,100}] (* Giorgos Kalogeropoulos, Jun 03 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    (Python 3.8+)
    from math import prod, gcd
    from sympy import primefactors, divisor_sigma
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist)
    def A344695(n): return gcd(A001615(n),divisor_sigma(n)) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = gcd(A000203(n), A001615(n)).
For prime p, a(p^e) = (p+1)^(e mod 2).
For prime p with gcd(p, n) = 1, a(p*n) = a(p) * a(n).
a(A007913(n)) | a(n).
a(n) = gcd(A000203(n), A244963(n)) = gcd(A001615(n), A244963(n)).
a(n) = A000203(n) / A344696(n).
a(n) = A001615(n) / A344697(n).

A344696 a(n) = sigma(n) / gcd(sigma(n), A001615(n)).

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 10, 7, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 10, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 21, 1, 57, 13
Offset: 1

Views

Author

Antti Karttunen, May 26 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 35, although a(4) = 7 and a(27) = 10. See A344702.

Crossrefs

Cf. A000203, A001615, A005117 (positions of ones), A344695, A344697, A344698, A344702.
Cf. also A344756.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344696(n) = { my(u=sigma(n)); (u/gcd(u,A001615(n))); };

Formula

a(n) = A000203(n) / A344695(n).

A344702 Positions k where A344695(k) is not multiplicative.

Original entry on oeis.org

108, 196, 200, 216, 288, 432, 441, 500, 540, 588, 600, 675, 676, 756, 784, 800, 864, 882, 980, 1000, 1080, 1125, 1188, 1225, 1323, 1350, 1372, 1400, 1404, 1440, 1444, 1500, 1512, 1521, 1568, 1728, 1764, 1800, 1836, 2000, 2016, 2028, 2052, 2156, 2160, 2200, 2205, 2250, 2352, 2376, 2400, 2450, 2484, 2548, 2592, 2600
Offset: 1

Views

Author

Antti Karttunen, May 27 2021

Keywords

Comments

Numbers k with a factorization into coprime x and k/x with A344695(x) * A344695(k/x) <> A344695(k). - Peter Munn, Jun 04 2021

Examples

			For 108 = 4*27, A344695(108) = 8, although A344695(4) = 1 and A344695(27) = 4, and 1*4 != 8, therefore 108 is included in this sequence.
For 441 = 9*49, A344695(441) = 3, although A344695(9) = 1 and A344695(49) = 1, and 1*1 != 3, therefore 441 is included in this sequence.
		

Crossrefs

Subsequence of A013929 and of A024619.

Programs

A348049 a(n) = A003959(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 9, 1, 1, 1, 81, 1, 16, 1, 9, 1, 1, 1, 9, 36, 1, 8, 9, 1, 1, 1, 27, 1, 1, 1, 144, 1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 81, 64, 36, 1, 9, 1, 8, 1, 9, 1, 1, 1, 9, 1, 1, 16, 729, 1, 1, 1, 9, 1, 1, 1, 144, 1, 1, 36, 9, 1, 1, 1, 81, 256, 1, 1, 9, 1, 1, 1, 9, 1, 16, 1, 9, 1, 1, 1, 27, 1, 64
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Comments

Not multiplicative. For example, a(196) = 192 != a(4) * a(49).

Crossrefs

Cf. A000203, A003959, A005117 (positions of 1's), A348029, A348047, A348048.
Cf. also A344697.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[m, DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348049(n) = { my(u=A003959(n)); (u/gcd(u, sigma(n))); };

Formula

a(n) = A003959(n) / A348047(n) = A003959(n) / gcd(A000203(n), A003959(n)).

A348505 a(n) = usigma(n) / gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 3, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 3, 26, 1, 7, 5, 1, 1, 1, 11, 1, 1, 1, 50, 1, 1, 1, 3, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 7, 1, 3, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 6, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1, 1, 5, 1, 1, 1, 3, 1, 10, 1, 5, 1, 1, 1, 11, 1, 50, 10, 130
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 6 != 3*10 = a(8) * a(9).

Crossrefs

Cf. A000203, A005117, A034448, A048146, A063880, A348503, A348504, A348506 (positions of ones).
Cf. also A344697, A348049.

Programs

  • Mathematica
    f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := (usigma = Times @@ f1 @@@ (fct = FactorInteger[n])) / GCD[usigma, Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348505(n) = { my(u=A034448(n)); (u/gcd(u, sigma(n))); };

Formula

a(n) = A034448(n) / A348503(n) = A034448(n) / gcd(A000203(n), A034448(n)).

A344757 a(n) = A069359(n) / gcd(A003415(n), A069359(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 13, 8, 1, 1, 5, 1, 7, 1, 15, 1, 5, 1, 9, 1, 1, 1, 31, 1, 1, 10, 1, 1, 1, 1, 19, 1, 1, 1, 5, 1, 1, 8, 21, 1, 1, 1, 7, 1, 1, 1, 41, 1, 1, 1, 13, 1, 31, 1, 25, 1, 1, 1, 5, 1, 9, 14, 1, 1, 1, 1, 15
Offset: 2

Views

Author

Antti Karttunen, May 28 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A069359(n) / A340070(n) = A069359(n) / gcd(A003415(n), A069359(n)).
Showing 1-8 of 8 results.