A348503 a(n) = gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.
1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (fct = FactorInteger[n]), Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
-
PARI
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448 A348503(n) = gcd(sigma(n), A034448(n));
Comments