A309272 Numbers m such that m divides A173290(m) = Sum_{k=1..m} psi(k), where psi is the Dedekind psi function (A001615).
1, 2, 5, 15, 31, 40, 66, 81, 315, 966, 1398, 1768, 30166, 32335, 98734, 388033, 591597, 1375056, 14966304, 15160528, 50793208, 51302236, 99253376, 110994356, 230465053, 402340268, 497982399, 2027319577, 2879855394, 18450762682, 29922126368, 31711273834, 40583934786
Offset: 1
Keywords
Examples
2 is in the sequence since psi(1) + psi(2) = 1 + 3 = 4 is divisible by 2. 5 is in the sequence since psi(1) + psi(2) + ... + psi(5) = 1 + 3 + 4 + 6 + 6 = 20 is divisible by 5.
Crossrefs
Programs
-
Mathematica
psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); seq = {}; s = 0; Do[s += psi[n]; If[Divisible[s, n], AppendTo[seq, n]], {n, 1, 10^4}]; seq
Extensions
a(31)-a(33) from Giovanni Resta, Oct 24 2019
Comments