A357821 Denominators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).
1, 3, 12, 4, 12, 6, 24, 8, 24, 72, 72, 18, 63, 504, 63, 504, 168, 504, 2520, 2520, 10080, 1120, 3360, 3360, 672, 224, 2016, 2016, 10080, 10080, 5040, 2520, 5040, 15120, 1890, 7560, 143640, 143640, 17955, 143640, 143640, 574560, 6320160, 6320160, 6320160, 6320160
Offset: 1
Programs
-
Mathematica
psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Denominator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
-
PARI
f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615 a(n) = denominator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ Michel Marcus, Oct 15 2022
Formula
a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).
Comments