cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060648 Number of cyclic subgroups of the group C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 4, 5, 10, 7, 20, 9, 22, 17, 28, 13, 50, 15, 36, 35, 46, 19, 68, 21, 70, 45, 52, 25, 110, 37, 60, 53, 90, 31, 140, 33, 94, 65, 76, 63, 170, 39, 84, 75, 154, 43, 180, 45, 130, 119, 100, 49, 230, 65, 148, 95, 150, 55, 212, 91, 198, 105, 124, 61, 350, 63, 132, 153, 190
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001

Keywords

Comments

The group U(n) of units modulo n acts on the direct product (Z_n)^k by multiplication. The number g(n,k) of orbits of U(n) acting on Z/(n)^k is g(n,k) = (1/phi(n))*Sum(gcd(n,a-1)^k) where the sum is over a in U(n) and phi(n) is the Euler totient function. A060648 gives g(n,2). - W. Edwin Clark, Jul 20 2001
a(n) is also the number of orbits of length n for the map TxT (Cartesion product) where T is a map with one orbit of each length. - Thomas Ward, Apr 08 2009

Examples

			The cycle index of C_4 X C_4 is (x(1)^4 + x(2)^2 + 2*x(4))^2 = x(1)^8 + 2*x(1)^4*x(2)^2 + 4*x(1)^4*x(4) + x(2)^4 + 4*x(2)^2*x(4) + 4*x(4)^2 and C_4 X C_4 has 1 element of order 1, 3 elements of order 2 and 12 elements of order 4. So a(4) = 1/phi(1) + 3/phi(2) + 12/phi(4) = 10, where phi = Euler totient function, cf. A000010. - _Vladeta Jovovic_, Jul 05 2001
For a(4) the pairs (e,d) are (1,4),(2,4),(4,4),(4,2),(4,1) with gcds 1,2,4,2,1 resp. giving 10 in total. - _Thomas Ward_, Apr 08 2009
		

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do:ans := 1:for i from 1 to nops(ifactors(n)[2]) do p := ifactors(n)[2][i][1]:e := ifactors(n)[2][i][2]:ans := ans*(p^(e+1)+p^e-2)/(p-1):od:printf(`%d,`,ans):od:
  • Mathematica
    Table[ Plus @@ Map[ Times @@ (EulerPhi /@ #)/EulerPhi[ LCM @@ # ] &, Flatten[ Outer[ {##} &, Divisors[ i ], Divisors[ i ] ], 1 ] ], {i, 1, 100} ]
    f[p_, e_] := (p^(e+1)+p^e-2)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n) = sumdiv(n, d,  2^omega(d)*(n/d) ); \\ Joerg Arndt, Sep 16 2012
  • Sage
    def A060648(n) :
        def dedekind_psi(n) : return n*mul(1+1/p for p in prime_divisors(n))
        return reduce(lambda x,y: x+y, [dedekind_psi(d) for d in divisors(n)])
    [A060648(n) for n in (1..64)]  # Peter Luschny, Sep 10 2012
    

Formula

a(n) is multiplicative: if the canonical factorization of n is the product of p^e(p) over primes then a(n) = product a(p^e(p)). If n = p^e, p prime, a(n) = (p^(e+1)+p^e-2)/(p-1).
a(n) = Sum_{i|n, j|n} phi(i)*phi(j)/phi(lcm(i, j)). - Vladeta Jovovic, Jul 07 2001
a(n) = Sum_{i|n, j|n} phi(gcd(i, j)).
a(n) = Sum_{d|n} phi(n/d)*tau(d^2).
a(n) = sum(d|n, sigma(d)*moebius(n/d)^2 ). - Benoit Cloitre, Sep 08 2002
Inverse Euler transform of A156302. - Vladeta Jovovic, Feb 14 2009
Moebius transform of A060724. - Vladeta Jovovic, Apr 05 2009
Also a(n) = (1/n)*Sum_{d|n} sigma(d)^2*moebius(n/d). - Vladeta Jovovic, Mar 31 2009
Inverse Moebius transform of A001615. - Vladeta Jovovic, Apr 05 2009
From Thomas Ward, Apr 08 2009: (Start)
a(n) = Sum_{lcm(e,d)=n} gcd(e,d).
Dirichlet g.f.: zeta(s)^2*zeta(s-1)/zeta(2s). (End)
For the proofs of these formulas see the papers of L. Toth.
a(n) = Sum_{d|n} psi(d), where psi is Dedekind's psi function A001615. - Peter Luschny, Sep 10 2012
a(n) = Sum_{d|n} 2^omega(d)*(n/d). - Peter Luschny, Sep 15 2012
Sum_{k=1..n} a(k) ~ (5/4) * n^2. - Amiram Eldar, Oct 19 2022
a(n) = Sum_{k=1..n} tau(gcd(n,k)^2). - Ridouane Oudra, Apr 10 2023
a(n) = Sum_{d divides n} J_2(d)/phi(d) = Sum_{1 <= i, j <= n} 1/phi(n/gcd(i,j,n)), where the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 23 2024

Extensions

More terms and additional comments from Vladeta Jovovic, Jul 05 2001

A178933 Generating function exp( sum(n>=1, sigma(n)^3*x^n/n ) ).

Original entry on oeis.org

1, 1, 14, 35, 205, 521, 2507, 6709, 26712, 73834, 262431, 724537, 2384988, 6552033, 20289864, 55244988, 163342701, 439201501, 1251532060, 3321188863, 9177476977, 24028568664, 64709650590, 167153761523, 440300702427, 1122562426240, 2900254892900, 7301575351055, 18544013542057
Offset: 0

Views

Author

Joerg Arndt, Dec 30 2010

Keywords

Comments

Compare with g.f. for partition numbers A000041: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
Similarly, exp( Sum_{n>=1} sigma(n)^2*x^n/n ) gives A156302.

Examples

			G.f.: A(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 521*x^5 + 2507*x^6 +...
such that, by definition,
log(A(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 6^3*x^5/5 + 12^3*x^6/6 +...
		

Crossrefs

Cf. A000203 (sigma), A000041 (partitions), A156302, A205797, A361147.

Programs

  • Mathematica
    nmax = 30; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[1,k]^3 * a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 30 2024 *)
  • PARI
    N=100;v=Vec(exp(sum(k=1,N,sigma(k)^3*x^k/k)+x*O(x^N)))
    
  • PARI
    a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k)^3*a(n-k)))
    
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)^3*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sum(k=1, n\m, sigma(m*k)^2*x^(m*k)/m)+x*O(x^n))), n)} /* Paul D. Hanna */

Formula

a(0)=0 and a(n)=1/n*sum(k=1,n,sigma(k)^3*a(n-k)) for n>0.
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n*k)^2 * x^(n*k) / n ). [Paul D. Hanna, Jan 31 2012]
From Vaclav Kotesovec, Oct 30 2024: (Start)
log(a(n)) ~ 2^(7/4) * c^(1/4) * Pi^(3/2) * zeta(3)^(1/4) * n^(3/4) / (3^(3/2) * 5^(1/4)), where c = Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 2.8359835743341928677044245715803848964089818378791769798895797934086403174189...
Equivalently, log(a(n)) ~ 3.2753680082113515869730831738879060384726246... * n^(3/4). (End)

A205797 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)^4 * x^n/n ).

Original entry on oeis.org

1, 1, 41, 126, 1526, 5185, 46920, 176865, 1254608, 4986548, 30563031, 123868761, 683127011, 2793828323, 14223836013, 58127497582, 278433541834, 1130954381904, 5159127957638, 20767403083249, 91032595281699, 362455763000997, 1536849042738162
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Examples

			G.f.: A(x) = 1 + x + 41*x^2 + 126*x^3 + 1526*x^4 + 5185*x^5 +...
such that, by definition,
log(A(x)) = x + 3^4*x^2/2 + 4^4*x^3/3 + 7^4*x^4/4 + 6^4*x^5/5 + 12^4*x^6/6 +...
		

Crossrefs

Cf. A156302, A178933, A000203 (sigma), A000041 (partitions), A361179.

Programs

  • Mathematica
    nmax = 30; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[1, k]^4 * a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 30 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)^4*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sum(k=1, n\m, sigma(m*k)^3*x^(m*k)/m)+x*O(x^n))), n)} /* Paul D. Hanna */
    
  • PARI
    a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k)^4*a(n-k)))

Formula

a(n) = (1/n)*Sum_{k=1..n} sigma(k)^4*a(n-k) for n>0, with a(0) = 1.
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n*k)^3 * x^(n*k) / n ).
From Vaclav Kotesovec, Oct 30 2024: (Start)
log(a(n)) ~ 5^(4/5) * c^(1/5) * Pi^(6/5) * zeta(3)^(1/5) * zeta(5)^(1/5) * n^(4/5) / (2^(9/5) * 3^(2/5)), where c = Product_{primes p} (1 + 3/p^2 + 5/p^3 + 3/p^4 + 3/p^5 + 5/p^6 + 3/p^7 + 1/p^9) = 6.04468280906514379869287397833397910321972833863778...
Equivalently, log(a(n)) ~ 3.967005157823944635858584839447899089435134... * n^(4/5). (End)

A382125 G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Original entry on oeis.org

1, 3, 15, 52, 180, 555, 1696, 4809, 13410, 35844, 93771, 238305, 594403, 1449441, 3476607, 8190824, 19015548, 43492230, 98197506, 218885763, 482337864, 1051051262, 2266904481, 4840955055, 10242621395, 21479302368, 44666897613, 92139573135, 188617118541, 383280793962, 773395096907
Offset: 0

Views

Author

Paul D. Hanna, Apr 06 2025

Keywords

Comments

Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
Equals the self-convolution cube of A382124.
Conjectures: a(3*n) == A382124(n) (mod 3) for n >= 0; a(3*n+1) == 0 (mod 3) and a(3*n+2) == 0 (mod 3) for n >= 0.

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 52*x^3 + 180*x^4 + 555*x^5 + 1696*x^6 + 4809*x^7 + 13410*x^8 + 35844*x^9 + 93771*x^10 + ...
where
A(x) = exp(3*x + 21*x^2/2 + 48*x^3/3 + 105*x^4/4 + 108*x^5/5 + 336*x^6/6 + 192*x^7/7 + 465*x^8/8 + 507*x^9/9 + 756*x^10/10 + ... + sigma(n)*sigma(2*n)*x^n/n + ...).
RELATED SERIES.
A(x)^(1/3) = 1 + x + 4*x^2 + 9*x^3 + 22*x^4 + 44*x^5 + 105*x^6 + 200*x^7 + 425*x^8 + 825*x^9 + 1634*x^10 + ... + A382124(n)*x^n + ...
		

Crossrefs

Cf. A382124, A382123, A156302, A347108, A000203 (sigma), A000041 (partitions).

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Exp[Sum[DivisorSigma[1,n]DivisorSigma[1,2*n] * x^n/n ,{n,nmax}]],{x,0,nmax}],x] (* Stefano Spezia, Apr 06 2025 *)
  • PARI
    {a(n) = my(A = exp( sum(m=1,n, sigma(m)*sigma(2*m)*x^m/m ) +x*O(x^n) ));
    polcoef(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ).
(2) A(x) = exp( Sum_{n>=1} Sum_{k>=1} sigma(2*n*k) * x^(n*k) / n ).
(3) a(n) = (1/n) * Sum_{k=1..n} sigma(k)*sigma(2*k) * a(n-k) for n>0, with a(0) = 1.

A163658 G.f.: A(x) = exp( Sum_{n>=1} A163659(n)^2*x^n/n ), where x*exp(Sum_{n>=1} A163659(n)*x^n/n) = S(x) is the g.f. of Stern's diatomic series (A002487).

Original entry on oeis.org

1, 1, 5, 6, 26, 30, 95, 115, 347, 412, 1076, 1308, 3277, 3941, 9081, 11050, 24694, 29834, 63067, 76711, 158127, 191360, 379032, 460448, 893441, 1081113, 2035189, 2468182, 4565994, 5520070, 9970503, 12068315, 21475803, 25926236, 45246532
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 6*x^3 + 26*x^4 + 30*x^5 + 95*x^6 +...
log(A(X)) = x + 3^2*x^2/2 + 2^2*x^3/3 + 7^2*x^4/4 + x^5/5 + 6^2*x^6/6 +...
log(S(x)/x) = x + 3*x^2/2 - 2*x^3/3 + 7*x^4/4 + x^5/5 - 6*x^6/6 +...
where S(x) is the g.f. of Stern's diatomic series (A002487):
S(x) = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 2*x^6 + 3*x^7 + x^8 + 4*x^9 +...
		

Crossrefs

Cf. A163659, A002487, A156302 (variant).

Programs

  • PARI
    {A002487(n)=local(c=1, b=0); while(n>0, if(bitand(n, 1), b+=c, c+=b); n>>=1); b}
    {A163659(n)=n*polcoeff(log(sum(k=0,n,A002487(k+1)*x^k)+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, A163659(k)^2*x^k/k)+x*O(x^n)), n)}

A377507 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^2 * x^k/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 2, 12, 66, 690, 4860, 63000, 711900, 8876700, 131405400, 2160219600, 37553808600, 686750664600, 13805424032400, 278759396916000, 6445702905642000, 150985820419434000, 3825993309462324000, 99427990563910008000, 2724045313186016820000, 78032929885709378580000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; $RecursionLimit->Infinity; a[n_]:=a[n]=If[n==0, 1, Sum[EulerPhi[k]^2*a[n-k], {k, 1, n}]/n];Table[a[n]*n!, {n, 0, nmax}]
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]^2 * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

log(a(n)/n!) ~ 3 * c^(1/3) * n^(2/3) / 2^(2/3), where c = Product_{p primes} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298...

A382124 G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n)/3 * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.

Original entry on oeis.org

1, 1, 4, 9, 22, 44, 105, 200, 425, 825, 1634, 3072, 5917, 10846, 20153, 36436, 65882, 116831, 207293, 361502, 629539, 1083068, 1856251, 3150554, 5328137, 8933266, 14920357, 24745481, 40869317, 67089425, 109697089, 178379353, 288953043, 465805681, 748079686, 1196148976, 1905801579, 3024212984
Offset: 0

Views

Author

Paul D. Hanna, Apr 06 2025

Keywords

Comments

Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
Equals the self-convolution cube root of A382125.
Conjecture: a(n) == A382125(3*n) (mod 3) for n >= 0.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 9*x^3 + 22*x^4 + 44*x^5 + 105*x^6 + 200*x^7 + 425*x^8 + 825*x^9 + 1634*x^10 + 3072*x^11 + 5917*x^12 + ...
RELATED SERIES.
A(x)^3 = 1 + 3*x + 15*x^2 + 52*x^3 + 180*x^4 + 555*x^5 + 1696*x^6 + 4809*x^7 + 13410*x^8 + ... + A382125(n)*x^n + ...
		

Crossrefs

Cf. A382125, A382123, A156302, A347108, A000203 (sigma), A000041 (partitions).

Programs

  • Mathematica
    nmax=37; CoefficientList[Series[Exp[Sum[DivisorSigma[1,n]DivisorSigma[1,2*n] * x^n/(3n) ,{n,nmax}]],{x,0,nmax}],x] (* Stefano Spezia, Apr 06 2025 *)
  • PARI
    {a(n) = my(A = exp( sum(m=1,n, sigma(m)*sigma(2*m)/3*x^m/m ) +x*O(x^n) ));
    polcoef(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = exp( (1/3) * Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ).
(2) A(x) = exp( (1/3) * Sum_{n>=1} (1/n) * Sum_{k>=1} sigma(2*n*k) * x^(n*k) ).
(3) a(n) = (1/n) * Sum_{k=1..n} sigma(k)*sigma(2*k)/3 * a(n-k) for n > 0, with a(0) = 1.

A195734 G.f.: exp( Sum_{n>=1} (2*sigma(n^2) - sigma(n)^2) * x^n/n ).

Original entry on oeis.org

1, 1, 3, 6, 11, 22, 40, 72, 123, 215, 363, 605, 991, 1618, 2598, 4139, 6537, 10229, 15871, 24476, 37487, 56995, 86177, 129531, 193662, 287992, 426254, 627841, 920708, 1344331, 1954987, 2831688, 4086168, 5875087, 8417724, 12020250, 17108958, 24275947, 34340966
Offset: 0

Views

Author

Paul D. Hanna, Sep 22 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 22*x^5 + 40*x^6 + 72*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 10*x^3/3 + 13*x^4/4 + 26*x^5/5 + 38*x^6/6 + 50*x^7/7 + 29*x^8/8 +...+ A195735(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[(2*DivisorSigma[1,k^2] - DivisorSigma[1,k]^2) * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 31 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n,(2*sigma(k^2)-sigma(k)^2)*x^k/k)+x*O(x^n)), n)}

Formula

Logarithmic derivative equals A195735.
log(a(n)) ~ 3*(5*zeta(3)*(12 - Pi^2))^(1/3) * n^(2/3) / (2*Pi^(2/3)). - Vaclav Kotesovec, Oct 31 2024

A180608 O.g.f.: exp( Sum_{n>=1} A067692(n)*x^n/n ), where A067692(n) = [sigma(n)^2 + sigma(n,2)]/2.

Original entry on oeis.org

1, 1, 4, 8, 21, 39, 93, 171, 364, 675, 1338, 2433, 4641, 8282, 15222, 26811, 47920, 83046, 145288, 248164, 425970, 718303, 1213106, 2020540, 3365352, 5541996, 9115640, 14856657, 24164430, 39002462, 62800603, 100454208, 160257140
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2010

Keywords

Comments

sigma(n) = A000203(n), sum of divisors of n;
sigma(n,2) = A001157(n), sum of squares of divisors of n.

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 93*x^6 +...
log(A(x)) = x + 7*x^2/2 + 13*x^3/3 + 35*x^4/4 + 31*x^5/5 + 97*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[(DivisorSigma[1, k]^2 + DivisorSigma[2, k])/2*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 28 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(m)^2+sigma(m,2))/2*x^m/m)+x*O(x^n)), n)}

Formula

log(a(n)) ~ 3*(7*zeta(3))^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Oct 29 2024
Showing 1-9 of 9 results.