A384047 Triangle read by rows: T(n, k) for 1 <= k <= n is the largest divisor of k that is a unitary divisor of n.
1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 2, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 3, 4, 1, 3, 1, 4, 3, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 1
Examples
Triangle begins: 1 1, 2 1, 1, 3 1, 1, 1, 4 1, 1, 1, 1, 5 1, 2, 3, 2, 1, 6 1, 1, 1, 1, 1, 1, 7 1, 1, 1, 1, 1, 1, 1, 8 1, 1, 1, 1, 1, 1, 1, 1, 9 1, 2, 1, 2, 5, 2, 1, 2, 1, 10
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10585 (first 145 rows flattened)
Crossrefs
Programs
-
Mathematica
udiv[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; T[n_, k_] := Max[Intersection[udiv[n], Divisors[k]]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
-
PARI
udiv(n) = select(x -> gcd(x, n/x) == 1, divisors(n)); T(n, k) = vecmax(setintersect(udiv(n), divisors(k)));
Comments