cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A078091 Continued fraction for constant defined in A065472.

Original entry on oeis.org

0, 1, 3, 2, 6, 13, 1, 2, 2, 3, 1, 1, 6, 1, 4, 1, 10, 1, 5, 1, 13, 1, 12, 384, 1, 2, 1, 14, 1, 11, 1, 2, 33, 1, 4, 1, 8, 1, 1, 1, 1, 2, 2, 1, 1, 11, 1, 1, 1, 8, 7, 1, 1, 5, 6, 7, 1, 1, 2, 3, 1, 8, 1, 1, 1, 2, 1, 1, 1, 7, 1, 2, 1, 2, 1, 15, 1, 2, 2, 15, 1, 2, 2, 1, 1, 8, 3, 2, 1, 1, 3, 13, 1
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065472 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1 - 1/(p+1)^2)) \\ Amiram Eldar, Jul 08 2024

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024

A065473 Decimal expansion of the strongly carefree constant: Product_{p prime} (1 - (3*p-2)/(p^3)).

Original entry on oeis.org

2, 8, 6, 7, 4, 7, 4, 2, 8, 4, 3, 4, 4, 7, 8, 7, 3, 4, 1, 0, 7, 8, 9, 2, 7, 1, 2, 7, 8, 9, 8, 3, 8, 4, 4, 6, 4, 3, 4, 3, 3, 1, 8, 4, 4, 0, 9, 7, 0, 5, 6, 9, 9, 5, 6, 4, 1, 4, 7, 7, 8, 5, 9, 3, 3, 6, 6, 5, 2, 2, 4, 3, 1, 3, 1, 9, 4, 3, 2, 5, 8, 2, 4, 8, 9, 1, 2, 6, 8, 2, 5, 5, 3, 7, 4, 2, 3, 7, 4, 6, 8, 5, 3, 6, 4, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Also decimal expansion of the probability that an integer triple (x, y, z) is pairwise coprime. - Charles R Greathouse IV, Nov 14 2011
The probability that 2 numbers chosen at random are coprime, and both squarefree (Delange, 1969). - Amiram Eldar, Aug 04 2020

Examples

			0.2867474284344787341078927127898384...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
  • Gerald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edition, American Mathematical Society, 2015, page 59, exercise 55 and 56.

Crossrefs

Programs

  • Mathematica
    digits = 100; NSum[-(2+(-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 11 2016 *)
  • PARI
    prodeulerrat(1 - (3*p-2)/(p^3)) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Prod_{p prime} (1 - 1/p)^2*(1 + 2/p). - Michel Marcus, Apr 16 2016
The constant c in Sum_{k<=x} mu(k)^2 * 2^omega(k) = c * x * log(x) + O(x), where mu is A008683 and omega is A001221, and in Sum_{k<=x} 3^omega(k) = (1/2) * c * x * log(x)^2 + O(x*log(x)) (see Tenenbaum, 2015). - Amiram Eldar, May 24 2020
Equals A065472 * A227929 = A065472 / A098198. - Amiram Eldar, Aug 04 2020

Extensions

Name corrected by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 03 2003
More digits from Vaclav Kotesovec, Dec 19 2019

A307868 Decimal expansion of the asymptotic mean of phi(k)/psi(k), where phi(k) is Euler totient function (A000010) and psi(k) is Dedekind psi function (A001615).

Original entry on oeis.org

4, 7, 1, 6, 8, 0, 6, 1, 3, 6, 1, 2, 9, 9, 7, 8, 6, 8, 0, 7, 5, 2, 3, 5, 6, 3, 3, 0, 8, 0, 4, 8, 2, 0, 8, 7, 4, 2, 5, 9, 2, 6, 3, 8, 2, 0, 0, 6, 9, 8, 6, 8, 8, 3, 6, 3, 5, 7, 3, 7, 2, 5, 5, 4, 1, 7, 7, 3, 2, 1, 1, 6, 7, 5, 9, 6, 8, 2, 7, 4, 4, 0, 9, 6, 2, 1, 0, 0, 2, 7, 3, 7, 6, 9, 4, 9, 0, 2, 3, 0, 3, 1, 3, 0, 1, 1
Offset: 0

Views

Author

Amiram Eldar, May 02 2019

Keywords

Comments

Also, the asymptotic mean of A162511. - Amiram Eldar, Sep 18 2022

Examples

			0.47168061361299786807523563308048208742592638200698...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-2, 1, 2}, {0, -4, 6}, m]; RealDigits[(2/3) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
  • PARI
    prodeulerrat(1 - 2/(p*(p+1))) \\ Vaclav Kotesovec, Sep 19 2020

Formula

Equals lim_{m->oo} (1/m)*Sum_{k=1..m} phi(k)/psi(k).
Equals Product_{p prime} (1 - 2/(p * (p+1))).
Equals A065472 / zeta(2). - Amiram Eldar, Sep 18 2022

Extensions

More digits from Vaclav Kotesovec, Sep 19 2020

A038063 Product_{k>=1}1/(1 - x^k)^a(k) = 1 + 2x.

Original entry on oeis.org

2, -3, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Apart from initial terms, exponents in expansion of A065472 as a product zeta(n)^(-a(n)).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(#+1) * MoebiusMu[n/#]*2^# &] / n; Array[a, 33] (* Amiram Eldar, May 29 2025 *)
  • PARI
    {a(n)=polcoeff(sum(k=1,n,moebius(k)/k*log(1+2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010

Formula

a(n) = (1/n) * Sum_{d divides n} (-1)^(d+1)*moebius(n/d)*2^d. - Vladeta Jovovic, Sep 06 2002
G.f.: Sum_{n>=1} moebius(n)*log(1 + 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
For n == 0, 1, 3 (mod 4), a(n) = (-1)^(n+1)*A001037(n), which for n>1 also equals (-1)^(n+1)*A059966(n) = (-1)^(n+1)*A060477(n).
For n == 2 (mod 4), a(n) = -(A001037(n) + A001037(n/2)). - George Beck and Max Alekseyev, May 23 2016
a(n) ~ -(-1)^n * 2^n / n. - Vaclav Kotesovec, Jun 12 2018

A162644 Numbers m such that A162511(m) = +1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

Also numbers n with A008836(n)=(-1)^A001221(n). - Enrique Pérez Herrero, Aug 03 2012
This sequence has an asymptotic density (1 + A065472/zeta(2))/2 = 0.735840... (Mossinghoff and Trudgian, 2019). - Amiram Eldar, Jul 07 2020

Crossrefs

Complement of A162645.
A002035 is a subsequence.

Programs

  • Mathematica
    Select[Range[100], EvenQ[PrimeOmega[#] - PrimeNu[#]] &] (* Amiram Eldar, Jul 07 2020 *)

A162645 Numbers m such that A162511(m) = -1.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 98, 99, 108, 112, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 188, 192, 198, 200, 204, 207, 208, 212, 220, 228
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

Numbers n where A001222(n)-A001221(n) is odd. - Enrique Pérez Herrero, Jul 07 2012
This sequence has an asymptotic density (1 - A065472/zeta(2))/2 = 0.264159... (Mossinghoff and Trudgian, 2019). - Amiram Eldar, Jul 07 2020

Crossrefs

Complement of A162644.
Subsequence of A072587.

Programs

A110833 a(n) = (prime(n)+1)^2.

Original entry on oeis.org

9, 16, 36, 64, 144, 196, 324, 400, 576, 900, 1024, 1444, 1764, 1936, 2304, 2916, 3600, 3844, 4624, 5184, 5476, 6400, 7056, 8100, 9604, 10404, 10816, 11664, 12100, 12996, 16384, 17424, 19044, 19600, 22500, 23104, 24964, 26896, 28224, 30276, 32400, 33124, 36864
Offset: 1

Views

Author

Giovanni Teofilatto, Sep 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [(p+1)^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 27 2014
    
  • Mathematica
    Table[(Prime[n] + 1)^2, {n, 200}] (* Vincenzo Librandi, Mar 27 2014 *)
  • Python
    from sympy import primerange
    print([(p+1)**2 for p in primerange(1, 192)]) # Michael S. Branicky, Sep 16 2021

Formula

From Amiram Eldar, Jan 23 2021: (Start)
a(n) = A008864(n)^2.
Product_{n>=1} (1 + 1/a(n)) = A065486.
Product_{n>=1} (1 - 1/a(n)) = A065472. (End)
Sum 1/a(n) = A382554. - R. J. Mathar, Mar 31 2025

Extensions

Corrected and extended by Ray Chandler, Oct 08 2005

A116393 Decimal expansion of Product(1 - 1/(p+1)^3), p prime >= 2.

Original entry on oeis.org

9, 4, 0, 3, 0, 0, 4, 1, 4, 5, 7, 0, 3, 4, 5, 0, 7, 0, 6, 1, 9, 4, 6, 5, 3, 8, 5, 3, 7, 3, 2, 3, 9, 4, 4, 9, 9, 9, 8, 5, 7, 4, 0, 1, 4, 3, 6, 9, 1, 3, 0, 0, 7, 2, 5, 7, 0, 3, 1, 3, 3, 8, 3, 0, 5, 9, 4, 7, 4, 6, 2, 1, 0, 4, 5, 5, 4, 5, 7, 8, 0, 1, 2, 6, 7, 0, 4
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

Comments

Calculated from A065465 * A065467^3 * X / A065466^2 where X = 1.03108637675008536... = product[ 1+ (4p^13 +13p^12 +10p^11 -3p^10 -9p^9 -12p^8 -9p^7 +6p^5 +4p^4 +2p^3 +p^2 -p -1) /(p^5+p^4-1)^3 / (p^3+p^2-1) / (p+1)] over prime p >=2. - R. J. Mathar, Sep 10 2007

Examples

			0.9403004...
		

Crossrefs

Cf. A065472.

Programs

  • PARI
    prodeulerrat(1 - 1/(p+1)^3) \\ Amiram Eldar, Nov 29 2020

Extensions

More terms from John W. Layman and Zak Seidov, Apr 20 2006
More terms from R. J. Mathar, Sep 10 2007
More terms from Amiram Eldar, Nov 29 2020

A340820 Decimal expansion of (1 + Product_{p prime} (1 - 2/(p*(p+1))))/2.

Original entry on oeis.org

7, 3, 5, 8, 4, 0, 3, 0, 6, 8, 0, 6, 4, 9, 8, 9, 3, 4, 0, 3, 7, 6, 1, 7, 8, 1, 6, 5, 4, 0, 2, 4, 1, 0, 4, 3, 7, 1, 2, 9, 6, 3, 1, 9, 1, 0, 0, 3, 4, 9, 3, 4, 4, 1, 8, 1, 7, 8, 6, 8, 6, 2, 7, 7, 0, 8, 8, 6, 6, 0, 5, 8, 3, 7, 9, 8, 4, 1, 3, 7, 2, 0, 4, 8, 1, 0, 5
Offset: 0

Views

Author

Amiram Eldar, Jan 22 2021

Keywords

Comments

The asymptotic density of numbers k such that A046660(k) is even (A162644).
Detrey et al. (2016) calculated 1000 decimal digits of this constant.

Examples

			0.735840306806498934037617816540241043712963191003493...
		

Crossrefs

Programs

  • PARI
    (prodeulerrat(1 - 2/(p*(p+1))) + 1)/2

Formula

Equals (1 + A065472/zeta(2))/2.
Equals lim_{n->oo} A340818(n)/A340819(n).
Showing 1-9 of 9 results.