cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A072587 Numbers having at least one prime factor with an even exponent.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2002

Keywords

Comments

Complement of the union of {1} and A002035. [Correction, Nov 15 2012]
A162645 is a subsequence and this sequence is a subsequence of A162643. - Reinhard Zumkeller, Jul 08 2009
The asymptotic density of this sequence is 1 - A065463 = 0.2955577990... - Amiram Eldar, Jul 21 2020
A number k is a term iff its core (A007913) properly divides its kernel (A007947), that is iff A336643(k) > 1. - David James Sycamore, Sep 18 2023

Crossrefs

Programs

  • Haskell
    a072587 n = a072587_list !! (n-1)
    a072587_list = tail $ filter (any even . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Mathematica
    Select[Range[210], MemberQ[EvenQ[Transpose[FactorInteger[#]][[2]]], True] &] (* Harvey P. Dale, Apr 03 2012 *)
  • PARI
    is(n)=n>3 && Set(factor(n)[,2]%2)[1]==0 \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A072587_gen(startvalue=1): # generator of terms
        return filter(lambda n:not all(map(lambda m:m&1,factorint(n).values())),count(max(startvalue,1)))
    A072587_list = list(islice(A072587_gen(),30)) # Chai Wah Wu, Jan 04 2023

Extensions

Thanks to Zak Seidov, who noticed that 1 had to be removed. - Reinhard Zumkeller, Nov 15 2012

A162511 Multiplicative function with a(p^e) = (-1)^(e-1).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009

Keywords

Crossrefs

Programs

  • Maple
    A162511 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := a*(-1)^(op(2,f)-1) ;
        end do:
        return a;
    end proc: # R. J. Mathar, May 20 2017
  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]); Array[a, 100] (* Jean-François Alcover, Apr 24 2017, after Reinhard Zumkeller *)
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,-(-1)^f[i]) \\ Charles R Greathouse IV, Mar 09 2015
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(-1)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017
    
  • Python
    from functools import reduce
    from sympy import factorint
    def A162511(n): return -1 if reduce(lambda a,b:~(a^b), factorint(n).values(),0)&1 else 1 # Chai Wah Wu, Jan 01 2023

Formula

Multiplicative function with a(p^e)=(-1)^(e-1) for any prime p and any positive exponent e.
a(n) = 1 when n is a squarefree number (A005117).
From Reinhard Zumkeller, Jul 08 2009 (Start)
a(n) = (-1)^(A001222(n)-A001221(n)).
a(A162644(n)) = +1; a(A162645(n)) = -1. (End)
a(n) = A076479(n) * A008836(n). - R. J. Mathar, Mar 30 2011
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A307868. - Amiram Eldar, Sep 18 2022
Dirichlet g.f.: Product_{p prime} ((p^s + 2)/(p^s + 1)). - Amiram Eldar, Oct 26 2023

A162644 Numbers m such that A162511(m) = +1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

Also numbers n with A008836(n)=(-1)^A001221(n). - Enrique Pérez Herrero, Aug 03 2012
This sequence has an asymptotic density (1 + A065472/zeta(2))/2 = 0.735840... (Mossinghoff and Trudgian, 2019). - Amiram Eldar, Jul 07 2020

Crossrefs

Complement of A162645.
A002035 is a subsequence.

Programs

  • Mathematica
    Select[Range[100], EvenQ[PrimeOmega[#] - PrimeNu[#]] &] (* Amiram Eldar, Jul 07 2020 *)

A377816 Numbers that have a single even exponent in their prime factorization.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 98, 99, 108, 112, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 188, 192, 198, 200, 204, 207, 208, 212, 220, 228
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A162645 at n = 239: A162645(239) = 900 = 2^2 * 3^2 * 5^2 is not a term of this sequence.
Each term can be represented in a unique way as m * p^(2*k), k >= 1, where m is an exponentially odd number (A268335) and p is a prime that does not divide m.
Numbers k such that A350388(k) is a prime power with an even positive exponent (A056798 \ {1}).
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p*(p+1))) * Sum_{p prime} 1/(p^2+p-1) = 0.26256423811374124133... .

Crossrefs

A377818 is a subsequence.

Programs

  • Mathematica
    Select[Range[250], Count[FactorInteger[#][[;; , 2]], _?EvenQ] == 1 &]
  • PARI
    is(k) = if(k == 1, 0, my(e = factor(k)[, 2]); #select(x -> !(x%2), e) == 1);

A377817 Numbers that have more than one even exponent in their prime factorization.

Original entry on oeis.org

36, 100, 144, 180, 196, 225, 252, 300, 324, 396, 400, 441, 450, 468, 484, 576, 588, 612, 676, 684, 700, 720, 784, 828, 882, 900, 980, 1008, 1044, 1089, 1100, 1116, 1156, 1200, 1225, 1260, 1296, 1300, 1332, 1444, 1452, 1476, 1521, 1548, 1575, 1584, 1600, 1620, 1692, 1700, 1764, 1800
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

Subsequence of A072413 and differs from it by not having the terms 216, 1000, 1080, 1512, ... .
Each term can be represented in a unique way as m * k^2, where m is an exponentially odd number (A268335) and k is a composite number that is coprime to m.
Numbers k such that A350388(k) is a square of a composite number (A062312 \ {1}).
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p*(p+1))) * (1 + Sum_{p prime} 1/(p^2+p-1)) = 0.032993560887093165933... .

Crossrefs

Complement of the union of A268335 and A377816.
Subsequence of A072413.

Programs

  • Mathematica
    Select[Range[1800], Count[FactorInteger[#][[;; , 2]], _?EvenQ] > 1 &]
  • PARI
    is(k) = if(k == 1, 0, my(e = factor(k)[, 2]); #select(x -> !(x%2), e) > 1);
Showing 1-5 of 5 results.