cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A318651 a(n) = A046644(n)/A318512(n).

Original entry on oeis.org

1, 2, 1, 8, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 128, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 256, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 256, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 1024, 1, 4, 1, 16, 1, 4, 1, 64, 1, 4, 1, 16, 1, 4, 1, 256, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 512, 1, 4, 1, 16, 1, 4, 1, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A046644(n)/A318512(n).
a(n) = 2^A318652(n).

A318513 The 2-adic valuation of A318512.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 0, 1, 0, 3, 0, 4, 0, 1, 1, 1, 0, 2, 0, 2, 2, 1, 0, 2, 0, 1, 1, 1, 0, 4, 0, 1, 0, 3, 2, 2, 0, 1, 3, 2, 0, 2, 0, 1, 1, 1, 0, 4, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 4, 0, 2, 1, 1, 0, 7, 0, 1, 1, 2, 0, 2, 0, 1, 3, 2, 0, 2, 0, 2, 0, 1, 2, 4, 2, 1, 1, 1, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Crossrefs

Cf. A318512.

Programs

Formula

a(n) = A007814(A318512(n)).

A318652 The 2-adic valuation of A046644(n)/A318512(n) (A318651).

Original entry on oeis.org

0, 1, 0, 3, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 7, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 10, 0, 2, 0, 4, 0, 2, 0, 6, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 9, 0, 2, 0, 4, 0, 2, 0, 5, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Crossrefs

Programs

  • PARI
    A318652(n) = valuation(A046644(n)/A318512(n),2); \\ Needs also code from those two respective entries.

Formula

a(n) = A007814(A318651(n)).
a(n) = A046645(n) - A318513(n).

A318656 The 2-adic valuation of ratio A318649(n)/A318512(n); a(n) = 2*A007814(n) - A046645(n).

Original entry on oeis.org

0, 1, -1, 1, -1, 0, -1, 2, -3, 0, -1, 0, -1, 0, -2, 1, -1, -2, -1, 0, -2, 0, -1, 1, -3, 0, -4, 0, -1, -1, -1, 2, -2, 0, -2, -2, -1, 0, -2, 1, -1, -1, -1, 0, -4, 0, -1, 0, -3, -2, -2, 0, -1, -3, -2, 1, -2, 0, -1, -1, -1, 0, -4, 2, -2, -1, -1, 0, -2, -1, -1, -1, -1, 0, -4, 0, -2, -1, -1, 0, -7, 0, -1, -1, -2, 0, -2, 1, -1, -3, -2, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

Also the 2-adic valuation of ratio A318681(n)/A299150(n) [which is equal to A318649(n)/A318512(n), but not represented in lowest terms], as well as the 2-adic valuation of A318680(n)/A299150(n) = A318511(n)/A318512(n).

Crossrefs

Cf. A318654 (positions of positive terms).

Programs

Formula

a(n) = A318655(n) - A318513(n).
a(n) = A007814(n) - A318440(n).
a(n) = 2*A007814(n) - A046645(n) = A007814(n^2) - A046645(n).

A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
a(n) = A046644(n)/A006519(n). - Andrew Howroyd and Antti Karttunen, Aug 30 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A318649 Numerators of the sequence whose Dirichlet convolution with itself yields squares, A000290.

Original entry on oeis.org

1, 2, 9, 6, 25, 9, 49, 20, 243, 25, 121, 27, 169, 49, 225, 70, 289, 243, 361, 75, 441, 121, 529, 90, 1875, 169, 3645, 147, 841, 225, 961, 252, 1089, 289, 1225, 729, 1369, 361, 1521, 250, 1681, 441, 1849, 363, 6075, 529, 2209, 315, 7203, 1875, 2601, 507, 2809, 3645, 3025, 490, 3249, 841, 3481, 675, 3721, 961, 11907, 924, 4225, 1089
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Crossrefs

Cf. A000290, A318512 (denominators).
Cf. also A046643, A299149, A318511, A318651, A318654 (gives the positions of even terms), A318655 (the 2-adic valuation).

Programs

  • PARI
    up_to = 65537;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA318649(n) = numerator(v318649_aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * ((n^2) - Sum_{d|n, d>1, d 1.
a(n) = n*A318512(n)*A299149(n)/A299150(n).
Sum_{k=1..n} A318649(k) / A318512(k) ~ n^3/(3*sqrt(Pi*log(n))) * (1 + (1 - 3*gamma/2) / (6*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 09 2025

A318511 Numerators of the sequence whose Dirichlet convolution with itself yields A064549, n * Product_{primes p|n} p.

Original entry on oeis.org

1, 2, 9, 2, 25, 9, 49, 4, 27, 25, 121, 9, 169, 49, 225, 6, 289, 27, 361, 25, 441, 121, 529, 18, -125, 169, 405, 49, 841, 225, 961, 12, 1089, 289, 1225, 27, 1369, 361, 1521, 50, 1681, 441, 1849, 121, 675, 529, 2209, 27, -1029, -125, 2601, 169, 2809, 405, 3025, 98, 3249, 841, 3481, 225, 3721, 961, 1323, 20, 4225, 1089, 4489, 289, 4761, 1225, 5041, 27
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

No zeros among the first 2^20 terms.
For odd primes p, it seems that a(p) = p^2.

Crossrefs

Cf. A064549, A318512 (denominators).
Cf. also A317935.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (n*Times @@ FactorInteger[n][[All, 1]] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 65537;
    A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); };
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA064549(n)));
    A318511(n) = numerator(v318511_12[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064549(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} A318511(k) / A318512(k) ~ n^3 * sqrt(Pi*f(3)/(54*log(n))) * (1 + (1/3 - gamma/2 - f'(3)/(2*f(3)) - 3*zeta'(2)/Pi^2) / (2*log(n))), where
f(3) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144...
f'(3)/f(3) = Sum_{p prime} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 1.469536740824614833203393993450164364663334798759143895712...
and gamma is the Euler-Mascheroni constant A001620. (End)

A318658 Denominators of the sequence whose Dirichlet convolution with itself yields A087003, a(2n) = 0 and a(2n+1) = moebius(2n+1).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 8, 1, 16, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 2, 1, 8, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 16, 1, 4, 1, 2, 1, 128, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 4, 1, 4, 1, 2, 1, 16, 1, 2, 1, 2, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Comments

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

Crossrefs

Cf. A005187, A087003, A318657 (numerators), A318659.

Programs

  • PARI
    up_to = 65537;
    A087003(n) = ((n%2)*moebius(n)); \\ I.e. a(n) = A000035(n)*A008683(n).
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA087003(n)));
    A318657(n) = numerator(v318657_18[n]);
    A318658(n) = denominator(v318657_18[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A087003(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318659(n).
a(2n) = 1, a(2n-1) = A046644(2n-1) = A318512(2n-1), for all n >= 1.

A318654 Positions of even terms in A318649.

Original entry on oeis.org

2, 4, 8, 16, 24, 32, 40, 56, 64, 88, 96, 104, 128, 136, 152, 160, 184, 192, 224, 232, 248, 256, 296, 320, 328, 344, 352, 376, 384, 416, 424, 448, 472, 488, 512, 536, 544, 568, 584, 608, 632, 640, 664, 704, 712, 736, 776, 808, 824, 832, 856, 872, 896, 904, 928, 992, 1016, 1024, 1048, 1088, 1096, 1112, 1184, 1192, 1208, 1216, 1256, 1304
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2018

Keywords

Comments

Positions of nonzero terms in A318655.
It appears that these are also the positions of even terms in A318511.

Crossrefs

A318681 a(n) = n * A299149(n).

Original entry on oeis.org

1, 2, 9, 12, 25, 18, 49, 40, 243, 50, 121, 108, 169, 98, 225, 560, 289, 486, 361, 300, 441, 242, 529, 360, 1875, 338, 3645, 588, 841, 450, 961, 2016, 1089, 578, 1225, 2916, 1369, 722, 1521, 1000, 1681, 882, 1849, 1452, 6075, 1058, 2209, 5040, 7203, 3750, 2601, 2028, 2809, 7290, 3025, 1960, 3249, 1682, 3481, 2700
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

Dirichlet convolution of a(n)/A299150(n) with itself gives A000290, the squares, like gives also the self-convolution of A318649(n)/A318512(n), as it is the same ratio reduced to its lowest terms. However, in contrast to A318649, this sequence is multiplicative as both A000027 and A299149 are multiplicative sequences (also, because A000290 and A299150 are both multiplicative).
A007814 gives the 2-adic valuation of this sequence, because there are no even terms in A299149.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] -
    sumdiv(n, d, if(d>1&&dA299149(n) = numerator(v299149_50[n]);
    A318681(n) = (n*A299149(n));

Formula

a(n) = n * A299149(n).
a(n)/A299150(n) = A318649(n)/A318512(n).
Showing 1-10 of 16 results. Next