A046645 a(n) = log_2(A046644(n)); also the 2-adic valuation of A046644(n).
0, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 7, 1, 4, 1, 4, 2, 2, 1, 5, 3, 2, 4, 4, 1, 3, 1, 8, 2, 2, 2, 6, 1, 2, 2, 5, 1, 3, 1, 4, 4, 2, 1, 8, 3, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 4, 10, 2, 3, 1, 4, 2, 3, 1, 7, 1, 2, 4, 4, 2, 3, 1, 8, 7, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 4, 2
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := 2*e - DigitCount[2*e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
-
PARI
A007814(n) = (valuation(n,2)); A046643perA046644(n) = { my(c=1); if(1==n,c,fordiv(n,d, if((d>1)&&(d
A046643perA046644(d)*A046643perA046644(n/d)))); (c/2)); } \\ After the Maple-program given in A046643. A046645(n) = A007814(denominator(A046643perA046644(n))); \\ Antti Karttunen, Jul 08 2017 -
PARI
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; A046645(n) = vecsum(apply(e -> A005187(e), factorint(n)[, 2])); \\ A faster implementation. - Antti Karttunen, Jul 08 2017
Formula
Additive with a(p^n) = A005187(n). - Antti Karttunen, Jul 08 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 1.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 29 2023
Comments