cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 55 results. Next

A046645 a(n) = log_2(A046644(n)); also the 2-adic valuation of A046644(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 7, 1, 4, 1, 4, 2, 2, 1, 5, 3, 2, 4, 4, 1, 3, 1, 8, 2, 2, 2, 6, 1, 2, 2, 5, 1, 3, 1, 4, 4, 2, 1, 8, 3, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 4, 10, 2, 3, 1, 4, 2, 3, 1, 7, 1, 2, 4, 4, 2, 3, 1, 8, 7, 2, 1, 5, 2, 2, 2, 5, 1, 5, 2, 4, 2
Offset: 1

Views

Author

Keywords

Comments

A268375 gives numbers n for which a(n) = A289617(n) = A005187(A001222(n)). - Antti Karttunen, Jul 08 2017

Crossrefs

Programs

Formula

a(n) = A007814(A046644(n)). - Michel Marcus, Apr 16 2015
Additive with a(p^n) = A005187(n). - Antti Karttunen, Jul 08 2017
a(n) = A293447(A293442(n)). - Antti Karttunen, Nov 10 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 1.410258867603361890498..., where f(x) = -x + Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)). - Amiram Eldar, Sep 29 2023

A317932 Denominators of certain "Dirichlet Square Root" sequences: a(n) = A046644(n)/(2^A007949(n)).

Original entry on oeis.org

1, 2, 1, 8, 2, 2, 2, 16, 2, 4, 2, 8, 2, 4, 2, 128, 2, 4, 2, 16, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 2, 256, 2, 4, 4, 16, 2, 4, 2, 32, 2, 4, 2, 16, 4, 4, 2, 128, 8, 16, 2, 16, 2, 4, 4, 32, 2, 4, 2, 16, 2, 4, 4, 1024, 4, 4, 2, 16, 2, 8, 2, 32, 2, 4, 8, 16, 4, 4, 2, 256, 8, 4, 2, 16, 4, 4, 2, 32, 2, 8, 4, 16, 2, 4, 4, 256, 2, 16, 4, 64, 2, 4, 2, 32, 4
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Comments

These are denominators for rational valued sequences that are obtained as "Dirichlet Square Roots" of sequences b that satisfy the condition b(3) = 2, and b(p) = odd number for any other primes p. For example, A064989, A065769 and A234840. - Antti Karttunen, Aug 31 2018
The original definition was: Denominators of the rational valued sequence whose Dirichlet convolution with itself yields A002487, Stern's Diatomic sequence. However, this definition depends on the conjecture given in A261179.

Crossrefs

Cf. A317930, A318319, A318669 (some of the numerator sequences), A317931 (conjectured, for A002487).
Cf. A305439 (the 2-adic valuation), A318666.

Programs

Formula

a(n) = A046644(n)/A318666(n) = 2^A305439(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d 1, where b can be A064989, A065769 or A234840 for example, conjecturally also A002487.
Multiplicative with a(3^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for any other primes. - Antti Karttunen, Sep 03 2018

Extensions

Definition changed, the original (now conjectured alternative definition) moved to the comments section by Antti Karttunen, Aug 31 2018
Keyword:mult added by Antti Karttunen, Sep 03 2018

A317940 Numerators of sequence whose Dirichlet convolution with itself yields A046644.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 9, 7, 1, 1, 7, 1, 1, 1, 427, 1, 7, 1, 7, 1, 1, 1, 9, 7, 1, 9, 7, 1, 1, 1, 471, 1, 1, 1, 49, 1, 1, 1, 9, 1, 1, 1, 7, 7, 1, 1, 427, 7, 7, 1, 7, 1, 9, 1, 9, 1, 1, 1, 7, 1, 1, 7, 4099, 1, 1, 1, 7, 1, 1, 1, 63, 1, 1, 7, 7, 1, 1, 1, 427, 427, 1, 1, 7, 1, 1, 1, 9, 1, 7, 1, 7, 1, 1, 1, 471, 1, 7, 7, 49, 1, 1, 1, 9, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 14 2018

Keywords

Comments

Multiplicative because A046644 is.
No negative terms among the first 2^20 terms. Is the sequence nonnegative?

Crossrefs

Cf. A005187, A046644, A317934 (denominators), A317941.

Programs

  • PARI
    up_to = 65537;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A046644(n) = factorback(apply(e -> 2^A005187(e),factor(n)[,2]));
    v317940aux = DirSqrt(vector(up_to, n, A046644(n)));
    A317940(n) = numerator(v317940aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A046644(n) - Sum_{d|n, d>1, d 1.

A318651 a(n) = A046644(n)/A318512(n).

Original entry on oeis.org

1, 2, 1, 8, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 128, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 256, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 256, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 1024, 1, 4, 1, 16, 1, 4, 1, 64, 1, 4, 1, 16, 1, 4, 1, 256, 1, 4, 1, 16, 1, 4, 1, 32, 1, 4, 1, 16, 1, 4, 1, 512, 1, 4, 1, 16, 1, 4, 1, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A046644(n)/A318512(n).
a(n) = 2^A318652(n).

A318652 The 2-adic valuation of A046644(n)/A318512(n) (A318651).

Original entry on oeis.org

0, 1, 0, 3, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 7, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 10, 0, 2, 0, 4, 0, 2, 0, 6, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 4, 0, 2, 0, 5, 0, 2, 0, 4, 0, 2, 0, 9, 0, 2, 0, 4, 0, 2, 0, 5, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Crossrefs

Programs

  • PARI
    A318652(n) = valuation(A046644(n)/A318512(n),2); \\ Needs also code from those two respective entries.

Formula

a(n) = A007814(A318651(n)).
a(n) = A046645(n) - A318513(n).

A181117 Triangle T(n,k) read by rows. T(n,k) = A046644(A126988).

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 8, 2, 0, 1, 2, 0, 0, 0, 1, 4, 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 16, 8, 0, 2, 0, 0, 0, 1, 8, 0, 2, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 16, 4, 8, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Mats Granvik, Oct 04 2010

Keywords

Comments

Denominator in fraction A181116/A181117.

Examples

			Triangle starts:
1,
2,1,
2,0,1,
8,2,0,1,
2,0,0,0,1,
4,2,2,0,0,1,
2,0,0,0,0,0,1,
16,8,0,2,0,0,0,1,
8,0,2,0,0,0,0,0,1,
4,2,0,0,2,0,0,0,0,1,
2,0,0,0,0,0,0,0,0,0,1,
16,4,8,2,0,2,0,0,0,0,0,1,
2,0,0,0,0,0,0,0,0,0,0,0,1,
4,2,0,0,0,0,2,0,0,0,0,0,0,1,
4,0,2,0,2,0,0,0,0,0,0,0,0,0,1,
		

Crossrefs

A051953 Cototient(n) := n - phi(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, 1, 38, 35, 40, 17, 54, 1, 48, 27
Offset: 1

Views

Author

Labos Elemer, Dec 21 1999

Keywords

Comments

Unlike totients, cototient(n+1) = cototient(n) never holds -- except 2-phi(2) = 3 - phi(3) = 1 -- because cototient(n) is congruent to n modulo 2. - Labos Elemer, Aug 08 2001
Theorem (L. Redei): b^a(n) == b^n (mod n) for every integer b. - Thomas Ordowski and Robert Israel, Mar 11 2016
Let S be the sum of the cototients of the divisors of n (A001065). S < n iff n is deficient, S = n iff n is perfect, and S > n iff n is abundant. - Ivan N. Ianakiev, Oct 06 2023

Examples

			n = 12, phi(12) = 4 = |{1, 5, 7, 11}|, a(12) = 12 - phi(12) = 8, numbers not exceeding 12 and not coprime to 12: {2, 3, 4, 6, 8, 9, 10, 12}.
		

Crossrefs

Cf. A000010, A001065 (inverse Möbius transform), A005278, A001274, A083254, A098006, A049586, A051612, A053579, A054525, A062790 (Möbius transform), A063985 (partial sums), A063986, A290087.
Records: A065385, A065386.
Number of zeros in the n-th row of triangle A054521. - Omar E. Pol, May 13 2016
Cf. A063740 (number of k such that cototient(k) = n). - M. F. Hasler, Jan 11 2018

Programs

  • Haskell
    a051953 n = n - a000010 n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    with(numtheory); A051953 := n->n-phi(n);
  • Mathematica
    Table[n - EulerPhi[n], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    A051953(n) = n - eulerphi(n); \\ Michael B. Porter, Jan 28 2010
    
  • Python
    from sympy.ntheory import totient
    print([i - totient(i) for i in range(1, 101)]) # Indranil Ghosh, Mar 17 2017

Formula

a(n) = n - A000010(n).
Equals Mobius transform (A054525) of A001065. - Gary W. Adamson, Jul 11 2008
a(A006881(n)) = sopf(A006881(n)) - 1; a(A000040(n)) = 1. - Wesley Ivan Hurt, May 18 2013
G.f.: sum(n>=1, A000010(n)*x^(2*n)/(1-x^n) ). - Mircea Merca, Feb 23 2014
From Ilya Gutkovskiy, Apr 13 2017: (Start)
G.f.: -Sum_{k>=2} mu(k)*x^k/(1 - x^k)^2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/zeta(s)). (End)
From Antti Karttunen, Sep 05 2018 & Apr 29 2022: (Start)
Dirichlet convolution square of A317846/A046644 gives this sequence + A063524.
a(n) = A003557(n) * A318305(n).
a(n) = A000010(n) - A083254(n).
a(n) = A318325(n) - A318326(n).
a(n) = Sum_{d|n} A062790(d) = Sum_{d|n, dA007431(d)*(A000005(n/d)-1).
a(n) = A048675(A318834(n)) = A276085(A353564(n)). [These follow from the formula below]
a(n) = Sum_{d|n, dA000010(d).
a(n) = A051612(n) - A001065(n).
(End)

A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 7, 1, 3, 3, 35, 1, 7, 1, 7, 3, 3, 1, 11, 3, 3, 5, 7, 1, 3, 1, 63, 3, 3, 3, 9, 1, 3, 3, 11, 1, 3, 1, 7, 7, 3, 1, 75, 3, 7, 3, 7, 1, 11, 3, 11, 3, 3, 1, 1, 1, 3, 7, 231, 3, 3, 1, 7, 3, 3, 1, 19, 1, 3, 7, 7, 3, 3, 1, 75, 35, 3, 1, 1, 3, 3, 3, 11, 1, 1, 3, 7, 3, 3, 3, 133, 1, 7, 7, 9, 1, 3, 1, 11, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

The first negative term is a(210) = -7.

Crossrefs

Programs

  • PARI
    A317937aux(n) = if(1==n,n,(omega(n)-sumdiv(n,d,if((d>1)&&(dA317937aux(d)*A317937aux(n/d),0)))/2);
    A317937(n) = numerator(A317937aux(n));
    
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dAndrew Howroyd, Aug 13 2018

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d 1.

A046643 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives numerator of b_n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 35, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 63, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 35, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 231, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 35, 35, 1, 1, 3, 1, 1, 1, 5, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

b(n) = A046643(n)/A046644(n) is multiplicative with b(p^n) = (2n-1)!!/2^n/n!. Dirichlet g.f. of A046643(n)/A046644(n) is sqrt(zeta(x)). - Christian G. Bower, May 16 2005
That is, b(p^n) = A001147(n) / (A000079(n)*A000142(n)) = A010050(n)/A000290(A000165(n)) = (2n)!/((2^n*n!)^2). - Antti Karttunen, Jul 08 2017

Examples

			b_1, b_2, ... = 1, 1/2, 1/2, 3/8, 1/2, 1/4, 1/2, 5/16, 3/8, 1/4, 1/2, 3/16, ...
		

Crossrefs

Programs

Formula

Sum_{b|d} b(d)b(n/d) = 1. Also b_{2^j} = A001790[ j ]/2^A005187[ j ].
From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = A001790(n).
a(1) = 1; for n > 1, a(n) = A001790(A067029(n)) * a(A028234(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025

A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
a(n) = A046644(n)/A006519(n). - Andrew Howroyd and Antti Karttunen, Aug 30 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018
Showing 1-10 of 55 results. Next