cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 307 results. Next

A053475 1 + the number of iterations of A051953 (Euler-cototient) function needed to reach 0, starting at n.

Original entry on oeis.org

2, 3, 3, 4, 3, 5, 3, 5, 4, 6, 3, 6, 3, 6, 4, 6, 3, 7, 3, 7, 5, 7, 3, 7, 4, 7, 5, 7, 3, 8, 3, 7, 4, 8, 4, 8, 3, 8, 5, 8, 3, 9, 3, 8, 6, 8, 3, 8, 4, 9, 4, 8, 3, 9, 5, 8, 6, 9, 3, 9, 3, 8, 6, 8, 4, 9, 3, 9, 5, 9, 3, 9, 3, 9, 5, 9, 4, 10, 3, 9, 6, 10, 3, 10, 6, 9, 4, 9, 3, 10, 4, 9, 5, 9, 4, 9, 3, 9, 6, 10, 3, 10
Offset: 1

Views

Author

Labos Elemer, Jan 14 2000

Keywords

Comments

Analogous sequences of iteration-lengths for A000005 or A000010 are A036459 and A049108 resp. The length values of 3 occur if the initial value is prime resulting in {p,1,0} iterations.

Examples

			Starting with n=18, the iterations of A051953 are as follows: {18,12,8,4,2,1,0}. The length of this sequence is 7, so a(18) = 7. The function is applied a(n)-1 times.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ NestWhileList[# - EulerPhi@ # &, n, # > 0 &], {n, 84}] (* Michael De Vlieger, Jul 04 2016 *)

Formula

a(n) = A076640(n) + 1. - Michael De Vlieger, Jul 04 2016

A323410 Unitary analog of cototient function A051953: a(n) = n - A047994(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 6, 1, 8, 7, 1, 1, 10, 1, 8, 9, 12, 1, 10, 1, 14, 1, 10, 1, 22, 1, 1, 13, 18, 11, 12, 1, 20, 15, 12, 1, 30, 1, 14, 13, 24, 1, 18, 1, 26, 19, 16, 1, 28, 15, 14, 21, 30, 1, 36, 1, 32, 15, 1, 17, 46, 1, 20, 25, 46, 1, 16, 1, 38, 27, 22, 17, 54, 1, 20, 1, 42, 1, 48, 21, 44, 31, 18, 1, 58, 19, 26, 33, 48
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); a[1] = 0; Array[a, 100] (* Amiram Eldar, Apr 08 2023 *)
  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A323410(n) = (n-A047994(n));

Formula

a(n) = n - A047994(n), where A047994 is unitary phi.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 - A065463 = 0.2955577... . - Amiram Eldar, Dec 15 2023

A063985 Partial sums of cototient sequence A051953.

Original entry on oeis.org

0, 1, 2, 4, 5, 9, 10, 14, 17, 23, 24, 32, 33, 41, 48, 56, 57, 69, 70, 82, 91, 103, 104, 120, 125, 139, 148, 164, 165, 187, 188, 204, 217, 235, 246, 270, 271, 291, 306, 330, 331, 361, 362, 386, 407, 431, 432, 464, 471, 501, 520, 548, 549, 585, 600, 632, 653, 683
Offset: 1

Views

Author

Labos Elemer, Sep 06 2001

Keywords

Comments

Number of elements in the set {(x,y): 1 <= x <= y <= n, 1 = gcd(x,y)}; a(n) = A000217(n) - A002088(n) = A100613(n) - A185670(n). - Reinhard Zumkeller, Jan 21 2013
8*a(n) is the number of dots not in direct reach via a straight line from the center of a 2*n+1 X 2*n+1 array of dots. - Kiran Ananthpur Bacche, May 25 2022

Crossrefs

Programs

  • Haskell
    a063985 n = length [()| x <- [1..n], y <- [x..n], gcd x y > 1]
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Java
    // Save the file as A063985.java to compile and run
    import java.util.stream.IntStream;
    import java.util.*;
    public class A063985 {
      public static int getInvisiblePoints(int n) {
        Set slopes = new HashSet();
        IntStream.rangeClosed(1, n).forEach(i ->
          {IntStream.rangeClosed(1, n).forEach(j ->
            slopes.add(Float.valueOf((float)i/(float)j))); });
        return (n * n - slopes.size() + n - 1) / 2;
      }
      public static void main(String args[]) throws Exception {
        IntStream.rangeClosed(1, 30).forEach(i ->
          System.out.println(getInvisiblePoints(i)));
      }
    } // Kiran Ananthpur Bacche, May 25 2022
  • Mathematica
    f[n_] := n(n + 1)/2 - Sum[ EulerPhi@i, {i, n}]; Array[f, 58] (* Robert G. Wilson v *)
    Accumulate[Table[n-EulerPhi[n],{n,1,60}]] (* Harvey P. Dale, Aug 19 2015 *)
  • PARI
    { a=0; for (n=1, 1000, write("b063985.txt", n, " ", a+=n - eulerphi(n)) ) } \\ Harry J. Smith, Sep 04 2009
    
  • Python
    from sympy.ntheory import totient
    def a(n): return sum(x - totient(x) for x in range(1,n + 1))
    [a(n) for n in range(1, 51)] # Indranil Ghosh, Mar 18 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A063985(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(k1*(k1+1)-2*A063985(k1)-1)
            j, k1 = j2, n//j2
        return (2*n+c-j)//2 # Chai Wah Wu, Mar 24 2021
    

Formula

a(n) = Sum_{x=1..n} (x - phi(x)) = Sum(x) - Sum(phi(x)) = A000217(n) - A002088(n), phi(n) = A000010(n), cototient(n) = A051953(n).
a(n) = n^2 - A091369(n). - Enrique Pérez Herrero, Feb 25 2012
G.f.: x/(1 - x)^3 - (1/(1 - x))*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 18 2017
a(n) = (1/2 - 3/Pi^2)*n^2 + O(n*log(n)). - Amiram Eldar, Jul 26 2022

Extensions

Corrected by Robert G. Wilson v, Dec 13 2006

A065385 Numbers m at which value of cototient function (A051953) reaches a new record: cototient(m) > cototient(k) for all k < m.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 102, 108, 114, 120, 126, 132, 138, 144, 150, 168, 180, 198, 204, 210, 240, 252, 264, 270, 294, 300, 330, 360, 378, 390, 420, 450, 462, 480, 504, 510, 540, 546, 570, 600, 630, 660, 690, 714
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

For totient values prime numbers give similar records.

Examples

			a(8) = 30 because for m = 1...29 the cototient values are all smaller than cototient(30) = 22 = A065386(8) and this is the 8th number at which such a record is reached; analogous sequences are A002093, A002182, A015702 or A005250 for functions other than cototient.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[# - EulerPhi@ # &, 10^3]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, May 16 2018 *)
  • PARI
    r=-1; for(n=1,1000,d=n-eulerphi(n); if(r
    				
  • PARI
    { n=0; x=-1; for (m=1, 10^9, c=m - eulerphi(m); if (c > x, x=c; write("b065385.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 17 2009

Formula

a=0; s=0; Do[s=n-EulerPhi[n]; If[s>a, a=s; Print[n]], {n, 1, 10000}]

A319700 a(n) = A051953(A252463(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 4, 4, 1, 3, 1, 6, 6, 1, 1, 8, 3, 1, 4, 8, 1, 7, 1, 8, 8, 1, 7, 12, 1, 1, 12, 12, 1, 9, 1, 12, 8, 1, 1, 16, 5, 5, 14, 14, 1, 9, 9, 16, 18, 1, 1, 22, 1, 1, 12, 16, 13, 13, 1, 18, 20, 11, 1, 24, 1, 1, 12, 20, 11, 15, 1, 24, 8, 1, 1, 30, 15, 1, 24, 24, 1, 21, 15, 24, 30, 1, 19, 32, 1, 7, 16, 30, 1, 19, 1, 28, 22
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2018

Keywords

Crossrefs

Programs

  • PARI
    A051953(n) = (n - eulerphi(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A319700(n) = A051953(A252463(n));

Formula

a(n) = A051953(A252463(n)).

A290087 a(1) = 0; for n > 1, a(n) = A289626(A051953(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 5, 4, 5, 1, 5, 1, 5, 4, 5, 1, 8, 3, 4, 4, 8, 1, 6, 1, 8, 7, 4, 6, 13, 1, 8, 8, 13, 1, 8, 1, 13, 11, 13, 1, 17, 4, 8, 10, 11, 1, 11, 8, 17, 11, 8, 1, 18, 1, 17, 10, 17, 9, 12, 1, 11, 14, 12, 1, 21, 1, 10, 19, 21, 9, 10, 1, 21, 10, 11, 1, 21, 11, 18, 16, 21, 1, 18, 10, 21, 18, 21, 12, 25, 1, 28, 19, 21, 1, 19, 1, 28, 29
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2017

Keywords

Crossrefs

Formula

a(1) = 0; for n > 1, a(n) = A289626(A051953(n)).

A295885 Filter combining sum of proper divisors (A001065) and cototient (A051953) of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 5, 6, 1, 7, 1, 8, 9, 10, 1, 11, 1, 12, 13, 14, 1, 15, 16, 17, 18, 19, 1, 20, 1, 21, 22, 23, 24, 25, 1, 26, 27, 28, 1, 29, 1, 30, 31, 32, 1, 33, 34, 35, 36, 37, 1, 38, 27, 39, 40, 41, 1, 42, 1, 43, 44, 45, 46, 47, 1, 48, 49, 50, 1, 51, 1, 52, 53, 54, 46, 55, 1, 56, 57, 58, 1, 59, 40, 60, 61, 62, 1, 63, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A051953(n) = (n-eulerphi(n));
    A001065(n) = (sigma(n)-n);
    Anotsubmitted5(n) = (1/2)*(2 + ((A051953(n)+A001065(n))^2) - A051953(n) - 3*A001065(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted5(n))),"b295885.txt");

Formula

Restricted growth sequence transform of a(n) = (1/2)*(2 + ((A051953(n) + A001065(n))^2) - A051953(n) - 3*A001065(n)).

A300232 Restricted growth sequence transform of A286152, filter combining A051953(n) and A046523(n), cototient and the prime signature of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 12, 13, 14, 2, 15, 16, 17, 18, 19, 2, 20, 2, 21, 22, 23, 24, 25, 2, 26, 27, 28, 2, 29, 2, 30, 31, 32, 2, 33, 34, 35, 36, 37, 2, 38, 27, 39, 40, 41, 2, 42, 2, 43, 44, 45, 46, 47, 2, 48, 49, 47, 2, 50, 2, 51, 52, 53, 46, 54, 2, 55, 56, 57, 2, 58, 40, 59, 60, 61, 2, 62, 36, 63, 64, 65, 66, 67, 2, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Examples

			a(39) = a(55) (= 27) because both are nonsquare semiprimes (3*13 and 5*11), and both have cototient value 15 = 39 - phi(39) = 55 - phi(55).
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A051953(n) = (n - eulerphi(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286152(n) = (2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n))/2;
    write_to_bfile(1,rgs_transform(vector(up_to,n,A286152(n))),"b300232.txt");

A300233 Filter sequence combining A051953(n) and A009194(n), cototient of n and gcd(n,sigma(n)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 13, 2, 15, 16, 17, 14, 18, 2, 19, 2, 20, 21, 22, 23, 24, 2, 25, 26, 27, 2, 28, 2, 29, 30, 31, 2, 32, 33, 34, 35, 36, 2, 37, 26, 38, 39, 40, 2, 41, 2, 42, 43, 44, 45, 46, 2, 47, 48, 49, 2, 50, 2, 51, 52, 53, 45, 54, 2, 55, 43, 56, 2, 57, 39, 58, 59, 60, 2, 61, 62, 60, 63, 55, 64, 65, 2, 66
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A051953(n), A009194(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Examples

			a(20) = a(22) (= 13) because A051953(20) = A051953(22) = 12 and A009194(20) = A009194(22) = 2.
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A009194(n) = gcd(n, sigma(n));
    A051953(n) = (n - eulerphi(n));
    Aux300233(n) = (1/2)*(2 + ((A051953(n)+A009194(n))^2) - A051953(n) - 3*A009194(n));
    write_to_bfile(1,rgs_transform(vector(65537,n,Aux300233(n))),"b300233.txt");

A049586 a(n) is the GCD of the cototients (A051953) of n and n+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3
Offset: 0

Views

Author

Labos Elemer, Dec 28 2000

Keywords

Comments

Most of the terms are 1.

Crossrefs

Programs

  • Magma
    [GCD((n+1-EulerPhi(n+1)), n-EulerPhi(n)): n in [1..100]]; // Vincenzo Librandi, Aug 10 2017
  • Mathematica
    Map[GCD @@ Map[# - EulerPhi@ # &, #] &, Partition[Range@ 106, 2, 1]] (* Michael De Vlieger, Aug 09 2017 *)

Formula

a(n) = gcd(n + 1 - phi(n+1), n - phi(n)).
a(n) = gcd(A051953(n+1), A051953(n)).
Showing 1-10 of 307 results. Next