A053039 Exponent of largest power of 2 which appears in the cototient-iteration started with n!.
0, 1, 2, 4, 5, 7, 9, 12, 14, 11, 13, 16, 14, 16, 23, 27, 23, 23, 24, 21, 23, 28, 42, 46, 26, 26, 26, 36, 43, 29, 50, 55, 37, 37, 40, 40, 39, 59, 39, 44, 68, 42, 42, 44, 51, 45, 50, 53, 49, 52, 51, 85, 55, 57, 53, 57, 60, 85, 62, 71, 62, 63, 60, 66, 66, 107, 67, 101, 76, 70, 75, 77
Offset: 1
Keywords
Examples
For n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and starting the iteration of A051593 with n!, the first powers of 2 which appear are 1, 2, 4, 16, 32, 128, 512, 4096, 16384, 2048 and the corresponding exponents are a(n) = 0, 1, 2, 4, 5, 7, 9, 12, 14, 11.
Programs
-
Mathematica
Log2 /@ Table[NestWhile[# - EulerPhi@ # &, n!, ! IntegerQ@ Log2@ # &], {n, 60}] (* Michael De Vlieger, Aug 15 2017 *)
-
PARI
cototient(x)= x - eulerphi(x) FunctionIterate(f,x,t)= {local(retval); retval = vector(0); while(x!=t, x = eval(concat(f,"(x)")); retval = concat(retval,x)); retval;} A053039(x) = {local(li,fa,retval); count = 0; li = concat([x! ], FunctionIterate("cototient", x!, 0)); for(i=1,#li, fa = factor(li[i]); if(((matsize(fa)[1] == 1) && (fa[1,1] == 2)),retval = fa[1,2]; break)); retval} for(i=1,72,print1(A053039(i),", ")) \\ Olaf Voß, Feb 21 2008
Extensions
More terms from Olaf Voß, Feb 21 2008
Comments